IDEAS home Printed from https://ideas.repec.org/p/ags/quedwp/273594.html
   My bibliography  Save this paper

Bayesian Estimation of Dynamic Discrete Choice Models

Author

Listed:
  • Imai, Susumu
  • Jain, Neelam
  • Ching, Andrew

Abstract

We propose a new methodology for structural estimation of dynamic discrete choice models. We combine the Dynamic Programming (DP) solution algorithm with the Bayesian Markov Chain Monte Carlo algorithm into a single algorithm that solves the DP problem and estimates the parameters simultaneously. As a result, the computational burden of estimating a dynamic model becomes comparable to that of a static model. Another feature of our algorithm is that even though per solution-estimation iteration, the number of grid points on the state variable is small, the number of effective grid points increases with the number of estimation iterations. This is how we help ease the "Curse of Dimensionality". We simulate and estimate several versions of a simple model of entry and exit to illustrate our methodology. We also prove that under standard conditions, the parameters converge in probability to the true posterior distribution, regardless of the starting values.

Suggested Citation

  • Imai, Susumu & Jain, Neelam & Ching, Andrew, 2006. "Bayesian Estimation of Dynamic Discrete Choice Models," Queen's Economics Department Working Papers 273594, Queen's University - Department of Economics.
  • Handle: RePEc:ags:quedwp:273594
    DOI: 10.22004/ag.econ.273594
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/273594/files/qed_wp_1118.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.273594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
    2. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    3. Andriy Norets, 2009. "Inference in Dynamic Discrete Choice Models With Serially orrelated Unobserved State Variables," Econometrica, Econometric Society, vol. 77(5), pages 1665-1682, September.
    4. Yacheng Sun & Shibo Li & Baohong Sun, 2015. "An Empirical Analysis of Consumer Purchase Decisions Under Bucket-Based Price Discrimination," Marketing Science, INFORMS, vol. 34(5), pages 646-668, September.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:quedwp:273594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.