IDEAS home Printed from https://ideas.repec.org/p/adb/adbwps/2332.html
   My bibliography  Save this paper

Working Paper 237 - Decomposing Sources of Productivity Change in Small-Scale Farming in Ethiopia

Author

Listed:

Abstract

The average farm size in Ethiopia is shrinking and the option for expanding the land frontier is also very limited. As a result, increasing farm productivity is critical for achieving higher growth and national food security. Identifying the drivers of productivity and weighing their significance are therefore vital for effective policy making. This paper applied a stochastic input distance function to decompose and test the significance of economic efficiency improvement in boosting the productivity of small-scale farmers. The results show that small-scale farming exhibits scale, technical and scope economies and thus the opportunities for increasing productivity through improving efficiency alone is significant. However, most of the improvement in efficiency in the immediate term is expected to come from the increase in the technical, mix, and scope efficiencies. Farmers that cultivate diverse crops are technically more efficient and are also able to realize economies of scope and scale than farmers with specialized production. While farmer specific factors played some roles, most of the inefficiencies are traced to externally imposed policy and institutional constraints. Addressing market failures and enhancing competition in the goods and factor markets, particular those that led to further land consolidation, will have a significant impact on farm productivity.

Suggested Citation

  • A. Wondemu Kifle, 2016. "Working Paper 237 - Decomposing Sources of Productivity Change in Small-Scale Farming in Ethiopia," Working Paper Series 2332, African Development Bank.
  • Handle: RePEc:adb:adbwps:2332
    as

    Download full text from publisher

    File URL: https://www.afdb.org/fileadmin/uploads/afdb/Documents/Publications/WPS_No_237_Decomposing_Sources_of_Productivity_Change_in_Small-Scale_Farming_in_Ethiopia.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmut Yasar & Rafal Raciborski & Brian Poi, 2008. "Production function estimation in Stata using the Olley and Pakes method," Stata Journal, StataCorp LP, vol. 8(2), pages 221-231, June.
    2. Federico Belotti & Silvio Daidone & Giuseppe Ilardi & Vincenzo Atella, 2013. "Stochastic frontier analysis using Stata," Stata Journal, StataCorp LP, vol. 13(4), pages 718-758, December.
    3. Asfaw, Solomon & McCarthy, Nancy & Paolantonio, Adriana & Cavatassi, Romina & Amare, Mulubrhan & Lipper, Leslie, 2015. "Diversification, Climate Risk and Vulnerability to Poverty: Evidence from Rural Malawi," 2015 Conference, August 9-14, 2015, Milan, Italy 230216, International Association of Agricultural Economists.
    4. Sabasi, Darlington & Shumway, C. Richard, 2014. "Technical Change, Efficiency, and Total Factor Productivity in U.S. Agriculture," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170225, Agricultural and Applied Economics Association.
    5. O'Donnell, Christopher J. & Coelli, Timothy J., 2005. "A Bayesian approach to imposing curvature on distance functions," Journal of Econometrics, Elsevier, vol. 126(2), pages 493-523, June.
    6. Tozer, Peter R. & Villano, Renato, 2013. "Decomposing Productivity and Efficiency among Western Australian Grain Producers," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 38(3), pages 1-15.
    7. Jean‐Paul Chavas & Salvatore Di Falco, 2012. "On the Role of Risk Versus Economies of Scope in Farm Diversification With an Application to Ethiopian Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(1), pages 25-55, February.
    8. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    9. Mekonnen, Daniel Ayalew & Gerber, Nicolas & Matz, Julia Anna, 2016. "Social networks, agricultural innovations, and farm productivity in Ethiopia," 2016 Fifth International Conference, September 23-26, 2016, Addis Ababa, Ethiopia 246436, African Association of Agricultural Economists (AAAE).
    10. Arne Henningsen & Christian Henning, 2009. "Imposing regional monotonicity on translog stochastic production frontiers with a simple three-step procedure," Journal of Productivity Analysis, Springer, vol. 32(3), pages 217-229, December.
    11. Giannis Karagiannis & Peter Midmore & Vangelis Tzouvelekas, 2004. "Parametric Decomposition of Output Growth Using A Stochastic Input Distance Function," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1044-1057.
    12. Catherine J. Morrison Paul & Warren E. Johnston & Gerald A. G. Frengley, 2000. "Efficiency in New Zealand Sheep and Beef Farming: The Impacts of Regulatory Reform," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 325-337, May.
    13. Paul, Catherine J. Morrison & Nehring, Richard, 2005. "Product diversification, production systems, and economic performance in U.S. agricultural production," Journal of Econometrics, Elsevier, vol. 126(2), pages 525-548, June.
    14. Marsh, Thomas L. & Featherstone, Allen M. & Garrett, Thomas A., 2003. "Input Inefficiency in Commercial Banks: A Normalized Quadratic Input Distance Approach," 2003 Regional Committee NCT-194, October 6-7, 2003; Kansas City, Missouri 132520, Regional Research Committee NC-1014: Agricultural and Rural Finance Markets in Transition.
    15. Feng, Guohua & Serletis, Apostolos, 2010. "Efficiency, technical change, and returns to scale in large US banks: Panel data evidence from an output distance function satisfying theoretical regularity," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 127-138, January.
    16. Jiro Nemoto & Noriko Furumatsu, 2014. "Scale and scope economies of Japanese private universities revisited with an input distance function approach," Journal of Productivity Analysis, Springer, vol. 41(2), pages 213-226, April.
    17. Xavier Irz & Colin Thirtle, 2004. "Dual Technological Development in Botswana Agriculture: A Stochastic Input Distance Function Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 55(3), pages 455-478, November.
    18. Bernhard Brümmer & Thomas Glauben & Geert Thijssen, 2002. "Decomposition of Productivity Growth Using Distance Functions: The Case of Dairy Farms in Three European Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 628-644.
    19. Hajargasht, Gholamreza & Coelli, Tim & Rao, D.S. Prasada, 2008. "A dual measure of economies of scope," Economics Letters, Elsevier, vol. 100(2), pages 185-188, August.
    20. Svend Rasmussen, 2010. "Scale efficiency in Danish agriculture: an input distance--function approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(3), pages 335-367, September.
    21. James Carroll & Carol Newman & Fiona Thorne, 2011. "A comparison of stochastic frontier approaches for estimating technical inefficiency and total factor productivity," Applied Economics, Taylor & Francis Journals, vol. 43(27), pages 4007-4019.
    22. Alene, Arega D. & Manyong, Victor M. & Gockowski, James, 2006. "The production efficiency of intercropping annual and perennial crops in southern Ethiopia: A comparison of distance functions and production frontiers," Agricultural Systems, Elsevier, vol. 91(1-2), pages 51-70, November.
    23. Scott Atkinson & Christopher Cornwell, 1998. "Estimating Radial Measures of Productivity Growth: Frontier vs Non-Frontier Approaches," Journal of Productivity Analysis, Springer, vol. 10(1), pages 35-46, July.
    24. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    25. Kwansoo Kim & Jean-Paul Chavas & Bradford Barham & Jeremy Foltz, 2012. "Specialization, diversification, and productivity: a panel data analysis of rice farms in Korea," Agricultural Economics, International Association of Agricultural Economists, vol. 43(6), pages 687-700, November.
    26. Ofori-Bah, Adeline & Asafu-Adjaye, John, 2011. "Scope economies and technical efficiency of cocoa agroforesty systems in Ghana," Ecological Economics, Elsevier, vol. 70(8), pages 1508-1518, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Huy, 2014. "Crop diversification, economic performance and household’s behaviours Evidence from Vietnam," MPRA Paper 59090, University Library of Munich, Germany.
    2. Nguyen, Huy Quynh, 2017. "Analyzing the economies of crop diversification in rural Vietnam using an input distance function," Agricultural Systems, Elsevier, vol. 153(C), pages 148-156.
    3. Kellermann, Magnus A., 2015. "Total Factor Productivity Decomposition and Unobserved Heterogeneity in Stochastic Frontier Models," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 44(1), pages 1-25, April.
    4. Ogundari, K. & Brümmer, Bernhard, 2011. "Estimating Technical Efficiency, Input substitution and complementary effects using Output Distance Function: A study of Cassava production in Nigeria," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(2).
    5. Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2022. "Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach," Empirical Economics, Springer, vol. 62(3), pages 1345-1363, March.
    6. Gbemay Singbo, Alphonse & Larue, Bruno, 2014. "Scale Economies and Technical Efficiency of Quebec Dairy Farms," Working Papers 182482, University of Laval, Center for Research on the Economics of the Environment, Agri-food, Transports and Energy (CREATE).
    7. Wirat Krasachat, 2023. "The Effect of Good Agricultural Practices on the Technical Efficiency of Chili Production in Thailand," Sustainability, MDPI, vol. 15(1), pages 1-25, January.
    8. Alphonse G. Singbo & Bruno Larue, 2014. "Scale Economies and Technical Efficiency of Quebec Dairy Farms," Cahiers de recherche CREATE 2014-7, CREATE.
    9. Huang, Wei & Bruemmer, Bernhard & Huntsinger, Lynn, 2016. "Incorporating measures of grassland productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China," Ecological Economics, Elsevier, vol. 122(C), pages 1-11.
    10. Ofori-Bah, Adeline & Asafu-Adjaye, John, 2011. "Scope economies and technical efficiency of cocoa agroforesty systems in Ghana," Ecological Economics, Elsevier, vol. 70(8), pages 1508-1518, June.
    11. Subal Kumbhakar & Dan Wang, 2007. "Economic reforms, efficiency and productivity in Chinese banking," Journal of Regulatory Economics, Springer, vol. 32(2), pages 105-129, October.
    12. Wimmer, Stefan G. & Sauer, Johannes, 2017. "The Economic Benefits of Farm Diversification: An Empirical Analysis of Economies of Scope Using the Dual Approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258465, Agricultural and Applied Economics Association.
    13. Brummer, B. & Glauben, T. & Lu, W., 2006. "Policy reform and productivity change in Chinese agriculture: A distance function approach," Journal of Development Economics, Elsevier, vol. 81(1), pages 61-79, October.
    14. Sean Pascoe & Phoebe Koundouri & Trond Bjørndal, 2007. "Estimating Targeting Ability in Multi-Species Fisheries: A Primal Multi-Output Distance Function Approach," Land Economics, University of Wisconsin Press, vol. 83(3), pages 382-397.
    15. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.
    16. Tai-Hsin Huang & Yi-Huang Chiu & Chih-Ying Mao, 2021. "Imposing Regularity Conditions to Measure Banks’ Productivity Changes in Taiwan Using a Stochastic Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(2), pages 273-303, June.
    17. Zhu, Xueqin & Oude Lansink, Alfons G.J.M., 2009. "Determinants of productivity change of crop and dairy farms in Germany, the Netherlands and Sweden in 1995-2004," 2009 Conference, August 16-22, 2009, Beijing, China 51648, International Association of Agricultural Economists.
    18. Kelvin Balcombe & Hristos Doucouliagos & Iain Fraser, 2007. "Input usage, output mix and industry deregulation: an analysis of the Australian dairy manufacturing industry ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(2), pages 137-156, June.
    19. Arandarage Mayura Prasad Arandara & Shingo Takahashi, 2023. "Productivity analysis of Sri Lankan cooperative banks: input distance function approach," Asia-Pacific Journal of Regional Science, Springer, vol. 7(1), pages 93-117, March.
    20. Mekonnen, Dawit K. & Dorfman, Jeffrey H., 2017. "Synergy and Learning Effects of Informal Labor-Sharing Arrangements," World Development, Elsevier, vol. 99(C), pages 1-14.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adb:adbwps:2332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adeleke Oluwole Salami (email available below). General contact details of provider: https://edirc.repec.org/data/afdbgci.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.