IDEAS home Printed from https://ideas.repec.org/p/aah/aarhec/2020-11.html
   My bibliography  Save this paper

Uncertainty and Monetary Policy during Extreme Events

Author

Listed:
  • Giovanni Pellegrino

    (Department of Economics and Business Economics, Aarhus University)

  • Efrem Castelnuovo

    (University of Padova and University of Melbourne)

  • Giovanni Caggiano

    (Monash University and University of Padova)

Abstract

How damaging are uncertainty shocks during extreme events such as the great recession and the Covid-19 outbreak? Can monetary policy limit output losses in such situations? We use a nonlinear VAR framework to document the large response of real activity to a financial uncertainty shock during the great recession. We replicate this evidence with an estimated DSGE framework featuring a concept of uncertainty comparable to that in our VAR. We employ the DSGE model to quantify the impact on real activity of an uncertainty shock under different Taylor rules estimated with normal times vs. great recession data (the latter associated with a stronger response to output). We find that the uncertainty shock-induced output loss experienced during the 2007-09 recession could have been twice as large if policymakers had not responded aggressively to the abrupt drop in output in 2008Q3. Finally, we use our estimated DSGE framework to simulate different paths of uncertainty associated to different hypothesis on the evolution of the coronavirus pandemic. We find that: i) Covid-19-induced uncertainty could lead to an output loss twice as large as that of the great recession, ii) aggressive monetary policy moves could reduce such loss by about 50%.

Suggested Citation

  • Giovanni Pellegrino & Efrem Castelnuovo & Giovanni Caggiano, 2020. "Uncertainty and Monetary Policy during Extreme Events," Economics Working Papers 2020-11, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:aarhec:2020-11
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/afn/wp/20/wp20_11.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrea Lanteri, 2018. "The Market for Used Capital: Endogenous Irreversibility and Reallocation over the Business Cycle," American Economic Review, American Economic Association, vol. 108(9), pages 2383-2419, September.
    2. Lawrence J. Christiano & Martin S. Eichenbaum & Mathias Trabandt, 2016. "Unemployment and Business Cycles," Econometrica, Econometric Society, vol. 84(4), pages 1523-1569, July.
    3. Glenn D. Rudebusch & Eric T. Swanson, 2012. "The Bond Premium in a DSGE Model with Long-Run Real and Nominal Risks," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(1), pages 105-143, January.
    4. Hall, Alastair R. & Inoue, Atsushi & Nason, James M. & Rossi, Barbara, 2012. "Information criteria for impulse response function matching estimation of DSGE models," Journal of Econometrics, Elsevier, vol. 170(2), pages 499-518.
    5. Oliver de Groot & Alexander W. Richter & Nathaniel A. Throckmorton, 2018. "Uncertainty Shocks in a Model of Effective Demand: Comment," Econometrica, Econometric Society, vol. 86(4), pages 1513-1526, July.
    6. Guerron-Quintana, Pablo & Inoue, Atsushi & Kilian, Lutz, 2017. "Impulse response matching estimators for DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 144-155.
    7. Renée Fry & Adrian Pagan, 2011. "Sign Restrictions in Structural Vector Autoregressions: A Critical Review," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 938-960, December.
    8. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    9. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 665-696.
    10. Fabio Canova, 2009. "What Explains The Great Moderation in the U.S.? A Structural Analysis," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 697-721, June.
    11. Francisco RUGE-MURCIA, 2014. "Indirect Inference Estimation of Nonlinear Dynamic General Equilibrium Models : With an Application to Asset Pricing under Skewness Risk," Cahiers de recherche 15-2014, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    12. Dario Caldara & Jesus Fernandez-Villaverde & Juan Rubio-Ramirez & Wen Yao, 2012. "Computing DSGE Models with Recursive Preferences and Stochastic Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 188-206, April.
    13. Leduc, Sylvain & Liu, Zheng, 2016. "Uncertainty shocks are aggregate demand shocks," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 20-35.
    14. Michele Piffer & Maximilian Podstawski, 2018. "Identifying Uncertainty Shocks Using the Price of Gold," Economic Journal, Royal Economic Society, vol. 128(616), pages 3266-3284, December.
    15. Atsushi Inoue & Barbara Rossi, 2011. "Identifying the Sources of Instabilities in Macroeconomic Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1186-1204, November.
    16. Brent Bundick & Andrew Lee Smith, 2016. "The dynamic effects of forward guidance shocks," Research Working Paper RWP 16-2, Federal Reserve Bank of Kansas City.
    17. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2008. "How Structural Are Structural Parameters?," NBER Chapters, in: NBER Macroeconomics Annual 2007, Volume 22, pages 83-137, National Bureau of Economic Research, Inc.
    18. Eric T. Swanson, 2012. "Risk Aversion and the Labor Margin in Dynamic Equilibrium Models," American Economic Review, American Economic Association, vol. 102(4), pages 1663-1691, June.
    19. Jermann, Urban J., 1998. "Asset pricing in production economies," Journal of Monetary Economics, Elsevier, vol. 41(2), pages 257-275, April.
    20. Julio J. Rotemberg, 1982. "Monopolistic Price Adjustment and Aggregate Output," Review of Economic Studies, Oxford University Press, vol. 49(4), pages 517-531.
    21. Hannah Schildberg-Hörisch, 2018. "Are Risk Preferences Stable?," Journal of Economic Perspectives, American Economic Association, vol. 32(2), pages 135-154, Spring.
    22. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Uncertainty and Monetary Policy during Extreme Events
      by Christian Zimmermann in NEP-DGE blog on 2020-10-23 03:19:34

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caggiano, Giovanni & Castelnuovo, Efrem & Delrio, Silvia & Kima, Richard, 2021. "Financial uncertainty and real activity: The good, the bad, and the ugly," European Economic Review, Elsevier, vol. 136(C).
    2. Caggiano, Giovanni & Castelnuovo, Efrem & Pellegrino, Giovanni, 2021. "Uncertainty shocks and the great recession: Nonlinearities matter," Economics Letters, Elsevier, vol. 198(C).
    3. Stefan Schiman & Atanas Pekanov, 2020. "Uncertainty in the Euro Area During the First Wave of the COVID-19 Pandemic," WIFO Studies, WIFO, number 66708.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Pellegrino & Efrem Castelnuovo & Giovanni Caggiano, 2021. "Uncertainty and Monetary Policy during the Great Recession," Economics Working Papers 2021-05, Department of Economics and Business Economics, Aarhus University.
    2. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    3. Castelnuovo, Efrem & Pellegrino, Giovanni, 2018. "Uncertainty-dependent effects of monetary policy shocks: A new-Keynesian interpretation," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 277-296.
    4. Martin M Andreasen & Jesús Fernández-Villaverde & Juan F Rubio-Ramírez, 2018. "The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications," Review of Economic Studies, Oxford University Press, vol. 85(1), pages 1-49.
    5. Martin Andreasen, 2012. "On the Effects of Rare Disasters and Uncertainty Shocks for Risk Premia in Non-Linear DSGE Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(3), pages 295-316, July.
    6. Caggiano, Giovanni & Castelnuovo, Efrem & Pellegrino, Giovanni, 2021. "Uncertainty shocks and the great recession: Nonlinearities matter," Economics Letters, Elsevier, vol. 198(C).
    7. Francisco RUGE-MURCIA, 2014. "Indirect Inference Estimation of Nonlinear Dynamic General Equilibrium Models : With an Application to Asset Pricing under Skewness Risk," Cahiers de recherche 15-2014, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    8. Jesus Fernandez-Villaverde & Pablo Guerron-Quintana, 2020. "Uncertainty Shocks and Business Cycle Research," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 37, pages 118-166, August.
    9. Bidder, R.M. & Smith, M.E., 2012. "Robust animal spirits," Journal of Monetary Economics, Elsevier, vol. 59(8), pages 738-750.
    10. Sinha, Arunima, 2016. "Monetary policy uncertainty and investor expectations," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 188-199.
    11. Juan Rubio-Ramirez & Jesus Fernandez-Villaverde & Pablo A. Guerron-Quintana, 2010. "Fortune or Virtue: Time Variant Volatilities versus Parameter Drifting in U.S. Data," 2010 Meeting Papers 270, Society for Economic Dynamics.
    12. Aldrich Eric Mark & Kung Howard, 2021. "Computational Methods for Production-Based Asset Pricing Models with Recursive Utility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(1), pages 1-26, February.
    13. Challe, Edouard & Giannitsarou, Chryssi, 2014. "Stock prices and monetary policy shocks: A general equilibrium approach," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 46-66.
    14. Francisco Ruge‐Murcia, 2017. "Skewness Risk and Bond Prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 379-400, March.
    15. Ruge-Murcia, Francisco, 2020. "Estimating nonlinear dynamic equilibrium models by matching impulse responses," Economics Letters, Elsevier, vol. 197(C).
    16. Fernández-Villaverde, Jesús & Guerrón-Quintana, Pablo & Rubio-Ramírez, Juan F., 2015. "Estimating dynamic equilibrium models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 185(1), pages 216-229.
    17. J. David Lopez-Salido & Francisco Vazquez-Grande & Pierlauro Lopez, 2015. "Macro-Finance Separation by Force of Habit," 2015 Meeting Papers 980, Society for Economic Dynamics.
    18. Pintor, Gabor, 2016. "The macroeconomic shock with the highest price of risk," LSE Research Online Documents on Economics 86225, London School of Economics and Political Science, LSE Library.
    19. Martin M. Andreasen & Anders Kronborg, 2017. "The Extended Perturbation Method: New Insights on the New Keynesian Model," CREATES Research Papers 2017-14, Department of Economics and Business Economics, Aarhus University.
    20. Herwartz, Helmut & Rohloff, Hannes, 2018. "Less bang for the buck? Assessing the role of inflation uncertainty for U.S. monetary policy transmission in a data rich environment," Center for European, Governance and Economic Development Research Discussion Papers 358, University of Goettingen, Department of Economics.

    More about this item

    Keywords

    Uncertainty shock; nonlinear IVAR; nonlinear DSGE framework; minimum-distance estimation; great recession; Covid-19;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:aarhec:2020-11. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.