IDEAS home Printed from https://ideas.repec.org/a/wsi/ccexxx/v03y2012i04ns2010007812500194.html
   My bibliography  Save this article

Barriers To Implementing Low-Carbon Technologies

Author

Listed:
  • KENNETH GILLINGHAM

    (Yale University, 195 Prospect Street, New Haven, CT 06510, USA)

  • JAMES SWEENEY

    (Precourt Energy Efficiency Center, Y2E2 Building Room 389, 473 Via Ortega, Stanford, CA 94305-4206, USA)

Abstract

This paper reviews the major barriers to the adoption of low-carbon technologies, with a focus on market failures that provide a rationale for policy intervention to improve economic efficiency. Market failures include externalities, asymmetric information, institutional failures, regulatory failures, and failures of consumer or firm decision-making. We discuss central generation renewable energy technologies, CCS technology, distribution generation renewable energy, and technologies to reduce the demand for energy. For each technology category, we assess whether and how policy might improve economic efficiency, and point to key open research questions.

Suggested Citation

  • Kenneth Gillingham & James Sweeney, 2012. "Barriers To Implementing Low-Carbon Technologies," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-21.
  • Handle: RePEc:wsi:ccexxx:v:03:y:2012:i:04:n:s2010007812500194
    DOI: 10.1142/S2010007812500194
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010007812500194
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010007812500194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J-T Teng, 2008. "Reply to Kun-Jen Chung," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1429-1430, October.
    2. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    3. FAN He, 2008. "Tsunami in New York Earthquake in Beijing?," Finance Working Papers 22733, East Asian Bureau of Economic Research.
    4. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalie Slawinski & Jonatan Pinkse & Timo Busch & Subhabrata Bobby Banerjeed, 2014. "The role of short-termism and uncertainty in organizational inaction on climate change: multilevel framework," Working Papers hal-00961226, HAL.
    2. Zheming Yan & Lan Yi & Kerui Du & Zhiming Yang, 2017. "Impacts of Low-Carbon Innovation and Its Heterogeneous Components on CO 2 Emissions," Sustainability, MDPI, vol. 9(4), pages 1-14, April.
    3. Yi-Ming Wei & Jin-Wei Wang & Tianqi Chen & Bi-Ying Yu & Hua Liao, 2018. "Frontiers of Low-Carbon Technologies: Results from Bibliographic Coupling with Sliding Window," CEEP-BIT Working Papers 116, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    4. Victoria Shestalova & Chiara Criscuolo & Nick Johnstone & Carlo Menon, 2014. "Renewable energy policies and cross-border investment: evidence from M&A in solar and wind energy," CPB Discussion Paper 288, CPB Netherlands Bureau for Economic Policy Analysis.
    5. Steven E. Sexton & A. Justin Kirkpatrick & Robert Harris & Nicholas Z. Muller, 2018. "Heterogeneous Environmental and Grid Benefits from Rooftop Solar and the Costs of Inefficient Siting Decisions," NBER Working Papers 25241, National Bureau of Economic Research, Inc.
    6. Hochman, Gal & Timilsina, Govinda R., 2017. "Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis," Energy Economics, Elsevier, vol. 63(C), pages 22-30.
    7. Victoria Shestalova & Chiara Criscuolo & Nick Johnstone & Carlo Menon, 2014. "Renewable energy policies and cross-border investment: evidence from M&A in solar and wind energy," CPB Discussion Paper 288.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    8. Lang, Tillmann & Gloerfeld, Erik & Girod, Bastien, 2015. "Don׳t just follow the sun – A global assessment of economic performance for residential building photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 932-951.
    9. Girod, Bastien & Mayer, Sebastian & Nägele, Florian, 2017. "Economic versus belief-based models: Shedding light on the adoption of novel green technologies," Energy Policy, Elsevier, vol. 101(C), pages 415-426.
    10. Liu, Yong, 2014. "Barriers to the adoption of low carbon production: A multiple-case study of Chinese industrial firms," Energy Policy, Elsevier, vol. 67(C), pages 412-421.
    11. Bo Wang & Chunyan Huang & Huaming Wang & Fangwei Liao, 2022. "Impact Factors in Chinese Construction Enterprises’ Carbon Emission-Reduction Intentions," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    12. Geddes, Anna & Schmidt, Tobias S. & Steffen, Bjarne, 2018. "The multiple roles of state investment banks in low-carbon energy finance: An analysis of Australia, the UK and Germany," Energy Policy, Elsevier, vol. 115(C), pages 158-170.
    13. Lei Jin & Keran Duan & Xu Tang, 2018. "What Is the Relationship between Technological Innovation and Energy Consumption? Empirical Analysis Based on Provincial Panel Data from China," Sustainability, MDPI, vol. 10(1), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Yueming & Kahn, Matthew E. & Xing, Bo, 2019. "Quantifying the rebound effects of residential solar panel adoption," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 310-341.
    2. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    3. Shijie Lu & Xin (Shane) Wang & Neil Bendle, 2020. "Does Piracy Create Online Word of Mouth? An Empirical Analysis in the Movie Industry," Management Science, INFORMS, vol. 66(5), pages 2140-2162, May.
    4. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    5. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    6. Costa, Dora L. & Kahn, Matthew E., 2013. "Do liberal home owners consume less electricity? A test of the voluntary restraint hypothesis," Economics Letters, Elsevier, vol. 119(2), pages 210-212.
    7. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    8. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    9. Lan, Haifeng & Gou, Zhonghua & Yang, Linchuan, 2020. "House price premium associated with residential solar photovoltaics and the effect from feed-in tariffs: A case study of Southport in Queensland, Australia," Renewable Energy, Elsevier, vol. 161(C), pages 907-916.
    10. Fei Xiong & Yun Liu & Zhenjiang Zhang, 2011. "Dynamics With Co-Evolution Of Individual Inclination And Opinion," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 51-62.
    11. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    12. Comin, Diego & Rode, Johannes, 2013. "From Green Users to Green Voters," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63678, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. James H. Merrick & John E. T. Bistline & Geoffrey J. Blanford, 2021. "On representation of energy storage in electricity planning models," Papers 2105.03707, arXiv.org, revised May 2021.
    14. Lemay, Amélie C. & Wagner, Sigurd & Rand, Barry P., 2023. "Current status and future potential of rooftop solar adoption in the United States," Energy Policy, Elsevier, vol. 177(C).
    15. Christopher J. Blackburn & Mallory E. Flowers & Daniel C. Matisoff & Juan Moreno‐Cruz, 2020. "Do Pilot and Demonstration Projects Work? Evidence from a Green Building Program," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(4), pages 1100-1132, September.
    16. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    17. Shirizadeh, Behrang & Quirion, Philippe, 2021. "Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?," Energy Economics, Elsevier, vol. 95(C).
    18. Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2022. "Roles of diffusion patterns, technological progress, and environmental benefits in determining optimal renewable subsidies in the US," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    19. René Aïd & Matteo Basei & Huyên Pham, 2020. "A McKean–Vlasov approach to distributed electricity generation development," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 269-310, April.
    20. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ccexxx:v:03:y:2012:i:04:n:s2010007812500194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.