IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0300246.html
   My bibliography  Save this article

Climate change beliefs, emotions and pro-environmental behaviors among adults: The role of core personality traits and the time perspective

Author

Listed:
  • Kinga Tucholska
  • Bożena Gulla
  • Agnieszka Ziernicka-Wojtaszek

Abstract

Climate change and its consequences are recognized as one of the most important challenges to the functioning of the Earth’s ecosystem and humanity. However, the response to the threat posed by the climate crisis still seems inadequate. The question of which psychological factors cause people to engage (or not) in pro-environmental behavior remains without a comprehensive answer. The aim of this study is to establish the links between the cognitive (level of knowledge about climate change and degree of belief in climate myths), emotional (various climate emotions, especially climate anxiety) and behavioral aspects of attitudes towards the climate crisis and their determinants in the form of the Big Five personality domains and time perspectives. The stated hypotheses were verified by analyzing data collected in an online survey of 333 adults using knowledge tests and self-report methods, including psychological questionnaires (Climate Change Anxiety Scale by Clayton and Karazsia, Big Five Inventory–short version by Schupp and Gerlitz, and Zimbardo Time Perspective Inventory by Zimbardo and Boyd), and measurement scales developed for this study (Climate myth belief scale, Climate emotion scale, and Inventories of current and planned pro-environmental activities). The results of stepwise regression analysis demonstrate the importance of the core personality traits and the dominant temporal perspective as determinants of belief in climate change myths, climate anxiety, as well as actual and planned pro-environmental behavior.

Suggested Citation

  • Kinga Tucholska & Bożena Gulla & Agnieszka Ziernicka-Wojtaszek, 2024. "Climate change beliefs, emotions and pro-environmental behaviors among adults: The role of core personality traits and the time perspective," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-20, April.
  • Handle: RePEc:plo:pone00:0300246
    DOI: 10.1371/journal.pone.0300246
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300246
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300246&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0300246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    2. Shijie Lu & Xin (Shane) Wang & Neil Bendle, 2020. "Does Piracy Create Online Word of Mouth? An Empirical Analysis in the Movie Industry," Management Science, INFORMS, vol. 66(5), pages 2140-2162, May.
    3. Costa, Dora L. & Kahn, Matthew E., 2013. "Do liberal home owners consume less electricity? A test of the voluntary restraint hypothesis," Economics Letters, Elsevier, vol. 119(2), pages 210-212.
    4. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    5. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    6. Lan, Haifeng & Gou, Zhonghua & Yang, Linchuan, 2020. "House price premium associated with residential solar photovoltaics and the effect from feed-in tariffs: A case study of Southport in Queensland, Australia," Renewable Energy, Elsevier, vol. 161(C), pages 907-916.
    7. Du, Hua & Han, Qi & de Vries, Bauke & Sun, Jun, 2024. "Community solar PV adoption in residential apartment buildings: A case study on influencing factors and incentive measures in Wuhan," Applied Energy, Elsevier, vol. 354(PA).
    8. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    9. Comin, Diego & Rode, Johannes, 2013. "From Green Users to Green Voters," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63678, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Lemay, Amélie C. & Wagner, Sigurd & Rand, Barry P., 2023. "Current status and future potential of rooftop solar adoption in the United States," Energy Policy, Elsevier, vol. 177(C).
    11. Christopher J. Blackburn & Mallory E. Flowers & Daniel C. Matisoff & Juan Moreno‐Cruz, 2020. "Do Pilot and Demonstration Projects Work? Evidence from a Green Building Program," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(4), pages 1100-1132, September.
    12. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    13. Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2022. "Roles of diffusion patterns, technological progress, and environmental benefits in determining optimal renewable subsidies in the US," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    14. Stefan Lamp, 2023. "Sunspots That Matter: The Effect of Weather on Solar Technology Adoption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 1179-1219, April.
    15. Rode, Johannes & Müller, Sven, 2016. "Spatio-Temporal Variation in Peer Effects - The Case of Rooftop Photovoltaic Systems in Germany," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 84765, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    16. Bale, Catherine S.E. & McCullen, Nicholas J. & Foxon, Timothy J. & Rucklidge, Alastair M. & Gale, William F., 2013. "Harnessing social networks for promoting adoption of energy technologies in the domestic sector," Energy Policy, Elsevier, vol. 63(C), pages 833-844.
    17. Christa Brelsford & Caterina De Bacco, 2018. "Are `Water Smart Landscapes' Contagious? An epidemic approach on networks to study peer effects," Papers 1801.10516, arXiv.org.
    18. Lan, Haifeng & Gou, Zhonghua & Lu, Yi, 2021. "Machine learning approach to understand regional disparity of residential solar adoption in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    19. Gómez, Patricia & Shaikh, Nazrul I. & Erkoc, Murat, 2024. "Continuous improvement in the efficient use of energy in office buildings through peers effects," Applied Energy, Elsevier, vol. 360(C).
    20. Gabriel S. Sampson & Edward D. Perry, 2019. "Peer effects in the diffusion of water‐saving agricultural technologies," Agricultural Economics, International Association of Agricultural Economists, vol. 50(6), pages 693-706, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0300246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.