IDEAS home Printed from https://ideas.repec.org/a/wly/jpamgt/v35y2016i1p195-222.html
   My bibliography  Save this article

The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects

Author

Listed:
  • Tian Tang
  • David Popp

Abstract

The Clean Development Mechanism (CDM) is a project‐based carbon trade mechanism that subsidizes the users of climate‐friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross‐sectional data of 486 registered CDM wind projects in China from 2002 to 2009, we examine the determinants of technological change in wind power from a learning perspective. We use a spatial error model to estimate the effects of different channels of learning—learning through R&D in wind turbine manufacturing, learning from a firm's previous wind project experience, spillovers from industry‐wide project experience, and learning through the network interaction between project developer and turbine manufacturer—on technological change, measured as reductions in projected costs or as increased capacity factor across CDM wind projects. While we find that a project developer's previous experience matters, interactions between a wind project developer and its partner foreign turbine manufacturer lead to the largest cost reductions and capacity factor improvement. We also find that spillovers from industry‐wide experience only exist for wind farm installation. The evidence of industry‐wide spillovers and the joint learning within partnerships between project developers and foreign turbine manufacturers supports the subsidies to users of wind technologies, and policy regimes that promote international collaboration and technology transfer.

Suggested Citation

  • Tian Tang & David Popp, 2016. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 35(1), pages 195-222, January.
  • Handle: RePEc:wly:jpamgt:v:35:y:2016:i:1:p:195-222
    DOI: 10.1002/pam.21879
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/pam.21879
    Download Restriction: no

    File URL: https://libkey.io/10.1002/pam.21879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2008. "The Clean Development Mechanism and the international diffusion of technologies: An empirical study," Energy Policy, Elsevier, vol. 36(4), pages 1273-1283, April.
    2. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    3. Ibenholt, Karin, 2002. "Explaining learning curves for wind power," Energy Policy, Elsevier, vol. 30(13), pages 1181-1189, October.
    4. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    5. Ru, Peng & Zhi, Qiang & Zhang, Fang & Zhong, Xiaotian & Li, Jianqiang & Su, Jun, 2012. "Behind the development of technology: The transition of innovation modes in China’s wind turbine manufacturing industry," Energy Policy, Elsevier, vol. 43(C), pages 58-69.
    6. A. Varga, 2006. "Spatial Knowledge Spillovers and University Research: Evidence from Austria," Springer Books, in: Innovation, Networks, and Knowledge Spillovers, chapter 10, pages 211-232, Springer.
    7. Huang, Cui & Su, Jun & Zhao, Xiaoyuan & Sui, Jigang & Ru, Peng & Zhang, Hanwei & Wang, Xin, 2012. "Government funded renewable energy innovation in China," Energy Policy, Elsevier, vol. 51(C), pages 121-127.
    8. Yang, Mian & Patiño-Echeverri, Dalia & Yang, Fuxia, 2012. "Wind power generation in China: Understanding the mismatch between capacity and generation," Renewable Energy, Elsevier, vol. 41(C), pages 145-151.
    9. David M. Drukker & Hua Peng & Ingmar Prucha & Rafal Raciborski, 2013. "Creating and managing spatial-weighting matrices with the spmat command," Stata Journal, StataCorp LLC, vol. 13(2), pages 242-286, June.
    10. Erik Haites & Maosheng Duan & Stephen Seres, 2006. "Technology transfer by CDM projects," Climate Policy, Taylor & Francis Journals, vol. 6(3), pages 327-344, May.
    11. Malte Schneider & Tobias S. Schmidt & Volker H. Hoffmann, 2010. "Performance of renewable energy technologies under the CDM," Climate Policy, Taylor & Francis Journals, vol. 10(1), pages 17-37, January.
    12. Andrew C. Inkpen & Steven C. Currall, 2004. "The Coevolution of Trust, Control, and Learning in Joint Ventures," Organization Science, INFORMS, vol. 15(5), pages 586-599, October.
    13. Patrik Söderholm & Ger Klaassen, 2007. "Wind Power in Europe: A Simultaneous Innovation–Diffusion Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(2), pages 163-190, February.
    14. Gregory F. Nemet, 2012. "Subsidies for New Technologies and Knowledge Spillovers from Learning by Doing," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 31(3), pages 601-622, June.
    15. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    16. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    17. Rahel Aichele & Gabriel Felbermayr, 2013. "The Effect of the Kyoto Protocol on Carbon Emissions," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 32(4), pages 731-757, September.
    18. Qiu, Yueming & Anadon, Laura D., 2012. "The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization," Energy Economics, Elsevier, vol. 34(3), pages 772-785.
    19. Wang, Bo, 2010. "Can CDM bring technology transfer to China?--An empirical study of technology transfer in China's CDM projects," Energy Policy, Elsevier, vol. 38(5), pages 2572-2585, May.
    20. Lewis, Joanna I., 2010. "The evolving role of carbon finance in promoting renewable energy development in China," Energy Policy, Elsevier, vol. 38(6), pages 2875-2886, June.
    21. Xiliang Zhang & Shiyan Chang & Molin Huo & Ruoshui Wang, 2009. "China's wind industry: policy lessons for domestic government interventions and international support," Climate Policy, Taylor & Francis Journals, vol. 9(5), pages 553-564, September.
    22. Kobos, Peter H. & Erickson, Jon D. & Drennen, Thomas E., 2006. "Technological learning and renewable energy costs: implications for US renewable energy policy," Energy Policy, Elsevier, vol. 34(13), pages 1645-1658, September.
    23. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    24. Rebecca Achee Thornton & Peter Thompson, 2001. "Learning from Experience and Learning from Others: An Exploration of Learning and Spillovers in Wartime Shipbuilding," American Economic Review, American Economic Association, vol. 91(5), pages 1350-1368, December.
    25. Yang, Ming & Nguyen, François & De T'Serclaes, Philippine & Buchner, Barbara, 2010. "Wind farm investment risks under uncertain CDM benefit in China," Energy Policy, Elsevier, vol. 38(3), pages 1436-1447, March.
    26. Berry, David, 2009. "Innovation and the price of wind energy in the US," Energy Policy, Elsevier, vol. 37(11), pages 4493-4499, November.
    27. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    28. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2009. "Technology transfer by CDM projects: A comparison of Brazil, China, India and Mexico," Energy Policy, Elsevier, vol. 37(2), pages 703-711, February.
    29. Won Kim, Chong & Phipps, Tim T. & Anselin, Luc, 2003. "Measuring the benefits of air quality improvement: a spatial hedonic approach," Journal of Environmental Economics and Management, Elsevier, vol. 45(1), pages 24-39, January.
    30. Seres, Stephen & Haites, Erik & Murphy, Kevin, 2009. "Analysis of technology transfer in CDM projects: An update," Energy Policy, Elsevier, vol. 37(11), pages 4919-4926, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," NBER Working Papers 19921, National Bureau of Economic Research, Inc.
    2. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," CESifo Working Paper Series 4705, CESifo.
    3. Tang, Tian, 2018. "Explaining technological change in the US wind industry: Energy policies, technological learning, and collaboration," Energy Policy, Elsevier, vol. 120(C), pages 197-212.
    4. Qiu, Yueming & Anadon, Laura D., 2012. "The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization," Energy Economics, Elsevier, vol. 34(3), pages 772-785.
    5. Daniela Marconi & Francesca Sanna-Randaccio, 2012. "The clean development mechanism and technology transfer to China," Questioni di Economia e Finanza (Occasional Papers) 129, Bank of Italy, Economic Research and International Relations Area.
    6. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
    7. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    8. Yu, Yang & Li, Hong & Che, Yuyuan & Zheng, Qiongjie, 2017. "The price evolution of wind turbines in China: A study based on the modified multi-factor learning curve," Renewable Energy, Elsevier, vol. 103(C), pages 522-536.
    9. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
    10. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    12. Tu, Qiang & Betz, Regina & Mo, Jianlei & Fan, Ying & Liu, Yu, 2019. "Achieving grid parity of wind power in China – Present levelized cost of electricity and future evolution," Applied Energy, Elsevier, vol. 250(C), pages 1053-1064.
    13. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    16. Hayashi, Daisuke & Huenteler, Joern & Lewis, Joanna I., 2018. "Gone with the wind: A learning curve analysis of China's wind power industry," Energy Policy, Elsevier, vol. 120(C), pages 38-51.
    17. Bibas, Ruben & Méjean, Aurélie & Hamdi-Cherif, Meriem, 2015. "Energy efficiency policies and the timing of action: An assessment of climate mitigation costs," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 137-152.
    18. Weitzel, Matthias & Liu, Wan-Hsin & Vaona, Andrea, 2013. "Determinants of technology transfer through CDM: The case of China," Kiel Working Papers 1889, Kiel Institute for the World Economy (IfW Kiel).
    19. Rout, Ullash K. & Fahl, Ulrich & Remme, Uwe & Blesl, Markus & Voß, Alfred, 2009. "Endogenous implementation of technology gap in energy optimization models--a systematic analysis within TIMES G5 model," Energy Policy, Elsevier, vol. 37(7), pages 2814-2830, July.
    20. Zhao, Zhen-Yu & Li, Zhi-Wei & Xia, Bo, 2014. "The impact of the CDM (clean development mechanism) on the cost price of wind power electricity: A China study," Energy, Elsevier, vol. 69(C), pages 179-185.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jpamgt:v:35:y:2016:i:1:p:195-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/journal/34787/home .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.