IDEAS home Printed from
   My bibliography  Save this article

Can CDM bring technology transfer to China?--An empirical study of technology transfer in China's CDM projects


  • Wang, Bo


China has undertaken the greatest number of projects and reported the largest emission reductions on the global clean development mechanism (CDM) market. As technology transfer (TT) was designed to play a key role for Annex II countries in achieving greenhouse gas emission reductions, this study examines various factors that have affected CDM and TT in China. The proportion of total income derived from the certified emissions reductions (CER) plays a key role in the project owners' decision to adopt foreign technology. Incompatibility of CDM procedures with Chinese domestic procedures, technology diffusion (TD) effects, Chinese government policy and the role of carbon traders and CDM project consultants all contribute to the different degrees and forms of TT. International carbon traders and CDM consultants could play a larger role in TT in China's CDM projects as investors and brokers in the future.

Suggested Citation

  • Wang, Bo, 2010. "Can CDM bring technology transfer to China?--An empirical study of technology transfer in China's CDM projects," Energy Policy, Elsevier, vol. 38(5), pages 2572-2585, May.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:5:p:2572-2585

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Rob Youngman & Jake Schmidt & Jin Lee & Heleen De Coninck, 2007. "Evaluating technology transfer in the Clean Development Mechanism and Joint Implementation," Climate Policy, Taylor & Francis Journals, vol. 7(6), pages 488-499, November.
    2. Schroeder, Miriam, 2009. "Utilizing the clean development mechanism for the deployment of renewable energies in China," Applied Energy, Elsevier, vol. 86(2), pages 237-242, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Erickson, Peter & Lazarus, Michael & Spalding-Fecher, Randall, 2014. "Net climate change mitigation of the Clean Development Mechanism," Energy Policy, Elsevier, vol. 72(C), pages 146-154.
    2. Stua, Michele, 2013. "Evidence of the clean development mechanism impact on the Chinese electric power system's low-carbon transition," Energy Policy, Elsevier, vol. 62(C), pages 1309-1319.
    3. Liu, Liwei & Chen, Chuxiang & Zhao, Yufei & Zhao, Erdong, 2015. "China׳s carbon-emissions trading: Overview, challenges and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 254-266.
    4. Yanchun Chen & Botang Han & Wenmei Liu, 2016. "Green technology innovation and energy intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 317-332, November.
    5. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," NBER Working Papers 19921, National Bureau of Economic Research, Inc.
    6. Ruiyue Jia & Xiumei Guo & Dora Marinova, 2013. "The role of the clean development mechanism in achieving China’s goal of a resource-efficient and environmentally friendly society," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(1), pages 133-148, February.
    7. Hong, Jin & Guo, Xiumei & Marinova, Dora & Yang, Fengli & Yu, Wentao, 2013. "Clean development mechanism in China: Regional distribution and prospects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 151-163.
    8. Weitzel, Matthias & Liu, Wan-Hsin & Vaona, Andrea, 2013. "Determinants of technology transfer through CDM: The case of China," Kiel Working Papers 1889, Kiel Institute for the World Economy (IfW).
    9. Pueyo, Ana, 2013. "Enabling frameworks for low-carbon technology transfer to small emerging economies: Analysis of ten case studies in Chile," Energy Policy, Elsevier, vol. 53(C), pages 370-380.
    10. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," CESifo Working Paper Series 4705, CESifo Group Munich.
    11. Liu, Hengwei & Liang, Xi, 2011. "Strategy for promoting low-carbon technology transfer to developing countries: The case of CCS," Energy Policy, Elsevier, vol. 39(6), pages 3106-3116, June.
    12. repec:spr:envpol:v:19:y:2017:i:3:d:10.1007_s10018-016-0175-0 is not listed on IDEAS
    13. Uddin, Noim & Blommerde, Mascha & Taplin, Ros & Laurence, David, 2015. "Sustainable development outcomes of coal mine methane clean development mechanism Projects in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 1-9.
    14. Kim, Jung Eun & Popp, David & Prag, Andrew, 2013. "The Clean Development Mechanism and neglected environmental technologies," Energy Policy, Elsevier, vol. 55(C), pages 165-179.
    15. Daniela Marconi & Francesca Sanna-Randaccio, 2012. "The clean development mechanism and technology transfer to China," Questioni di Economia e Finanza (Occasional Papers) 129, Bank of Italy, Economic Research and International Relations Area.
    16. Gregor Schwerhoff, 2013. "Leadership and International Climate Cooperation," Working Papers 2013.97, Fondazione Eni Enrico Mattei.
    17. Patrick Bayer & Johannes Urpelainen & Alice Xu, 2016. "Explaining differences in sub-national patterns of clean technology transfer to China and India," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(2), pages 261-283, April.
    18. Wang, Can & Zhang, Weishi & Cai, Wenjia & Xie, Xi, 2013. "Employment impacts of CDM projects in China's power sector," Energy Policy, Elsevier, vol. 59(C), pages 481-491.
    19. Zhao, Zhen-yu & Sun, Guang-zheng & Zuo, Jian & Zillante, George, 2013. "The impact of international forces on the Chinese wind power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 131-141.
    20. Pueyo, Ana & García, Rodrigo & Mendiluce, María & Morales, Darío, 2011. "The role of technology transfer for the development of a local wind component industry in Chile," Energy Policy, Elsevier, vol. 39(7), pages 4274-4283, July.
    21. Xu, Xin & You, Shijun & Zheng, Xuejing & Li, Han, 2014. "A survey of district heating systems in the heating regions of northern China," Energy, Elsevier, vol. 77(C), pages 909-925.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:5:p:2572-2585. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.