IDEAS home Printed from https://ideas.repec.org/a/spr/ssefpa/v14y2022i5d10.1007_s12571-021-01253-w.html
   My bibliography  Save this article

Rice yield response to climate and price policy in high-latitude regions of China

Author

Listed:
  • Yan Yu

    (Huazhong Agricultural University
    Dalhousie University)

  • J. Stephen Clark

    (Dalhousie University)

  • Qingsong Tian

    (Huazhong Agricultural University
    Dalhousie University)

  • Fengxian Yan

    (Huazhong Agricultural University
    Huazhong Agricultural University)

Abstract

Climate change has renewed interest in the production capacity of agriculture. Few researchers paid attention to price policy and heteroscedasticity in yield model. We incorporate rice price policy into the yield model at the expected price using a Tobit procedure and take Kalman filter theory to explore useful information, and then estimate the rice yield response to climate and rice price using a spatial autoregressive combined model in high-latitude regions of China from 1992 to 2018. Meanwhile, we apply two different Breusch-Pagan tests to examine heteroscedasticity. Our results suggest that spatial correlation of the error term is a more critical source of heteroscedasticity and cannot be completely solved by only allowing spatially autocorrelated errors due to possible technology diffusion effects. The results also show that rice price support policy is useful for constructing rice expected prices, and the price elasticities of rice and corn on rice yield are 0.194 and -0.097, respectively. Among climate variables, the total growing degree days in the growing season has positive effects, and monthly accumulated growing degree days also matter, especially in June. Precipitation in July and August has a significant effect with an inverse U shape. Projections of future climate change suggest that rice yield will mainly increase, ranging from 0.095% to 1.769%, but the rate of increase in yield will slow down in the higher-rate global warming. This study shows how price policy could be incorporated into yield response model and highlights the importance of climate factors and crop price policy for rice yield.

Suggested Citation

  • Yan Yu & J. Stephen Clark & Qingsong Tian & Fengxian Yan, 2022. "Rice yield response to climate and price policy in high-latitude regions of China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1143-1157, October.
  • Handle: RePEc:spr:ssefpa:v:14:y:2022:i:5:d:10.1007_s12571-021-01253-w
    DOI: 10.1007/s12571-021-01253-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12571-021-01253-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12571-021-01253-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Qin & Sarker, Rakhal & Fox, Glenn & McKenney, Daniel, 2019. "Effects Of Climatic And Economic Factors On Corn And Soybean Yields In Ontario: A County Level Analysis," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 7(1), January.
    2. Maddala,G. S., 1986. "Limited-Dependent and Qualitative Variables in Econometrics," Cambridge Books, Cambridge University Press, number 9780521338257.
    3. Marc Nerlove, 1956. "Estimates of the Elasticities of Supply of Selected Agricultural Commodities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 38(2), pages 496-509.
    4. Justin Yifu Lin, 1991. "Education and Innovation Adoption in Agriculture: Evidence from Hybrid Rice in China," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(3), pages 713-723.
    5. Ruiqing Miao & Madhu Khanna & Haixiao Huang, 2016. "Responsiveness of Crop Yield and Acreage to Prices and Climate," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(1), pages 191-211.
    6. William Lin & Robert Dismukes, 2007. "Supply Response under Risk: Implications for Counter-Cyclical Payments' Production Impact," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(1), pages 64-86.
    7. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    8. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    9. Mekbib G. Haile & Matthias Kalkuhl & Joachim von Braun, 2016. "Worldwide Acreage and Yield Response to International Price Change and Volatility: A Dynamic Panel Data Analysis for Wheat, Rice, Corn, and Soybeans," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(1), pages 172-190.
    10. Du, Xiaodong & Hennessy, David A. & Feng, Hongli, 2017. "Crop Yield and Acreage Adaptation to Climate Changes: Empirical Evidence in Recent Decades," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258327, Agricultural and Applied Economics Association.
    11. J. Stephen Clark & Julia S. Taylor & John Spriggs, 1992. "The Effect of New Price Information on Crop Supply," Canadian Journal of Economics, Canadian Economics Association, vol. 25(1), pages 172-183, February.
    12. Wei Lu & Wiktor Adamowicz & Scott R. Jeffrey & Greg G. Goss & Monireh Faramarzi, 2018. "Crop Yield Response to Climate Variables on Dryland versus Irrigated Lands," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 66(2), pages 283-303, June.
    13. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2016. "Impacts of climate change on agriculture: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 105-124.
    14. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    15. Philip Kostov, 2010. "Model Boosting for Spatial Weighting Matrix Selection in Spatial Lag Models," Environment and Planning B, , vol. 37(3), pages 533-549, June.
    16. J. Stephen Clark & Catherine S. Fleming, 1990. "Estimating Price Distortions Caused by Canadian Wheat Board Initial Payment Policy," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 38(4), pages 923-930, December.
    17. Michael Beenstock & Daniel Felsenstein, 2019. "The Econometric Analysis of Non-Stationary Spatial Panel Data," Advances in Spatial Science, Springer, number 978-3-030-03614-0, Fall.
    18. Zhang, Jian & Mishra, Ashok K. & Hirsch, Stefan & Li, Xiaoshun, 2020. "Factors affecting farmland rental in rural China: Evidence of capitalization of grain subsidy payments," Land Use Policy, Elsevier, vol. 90(C).
    19. Hubert Jayet & Julie Le Gallo & Luc Anselin, 2008. "Spatial Econometrics and Panel Data Models," Post-Print hal-02389412, HAL.
    20. Lechan Yang & Zhihao Qin & Lili Tu, 2015. "Responses of rice yields in different rice-cropping systems to climate variables in the middle and lower reaches of the Yangtze River, China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(5), pages 951-963, October.
    21. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    22. LeSage, James P., 1997. "Regression Analysis of Spatial Data," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 27(2), pages 1-12.
    23. Alfons Weersink & Juan H. Cabas & Edward Olale, 2010. "Acreage Response to Weather, Yield, and Price," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(1), pages 57-72, March.
    24. Pin Wang & Zhao Zhang & Xiao Song & Yi Chen & Xing Wei & Peijun Shi & Fulu Tao, 2014. "Temperature variations and rice yields in China: historical contributions and future trends," Climatic Change, Springer, vol. 124(4), pages 777-789, June.
    25. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeotae Yun, 2023. "Changes in the Growth and Yield of an Extremely Early-Maturing Rice Variety According to Transplanting Density," Agriculture, MDPI, vol. 13(3), pages 1-12, March.
    2. Chandio, Abbas Ali & Ozdemir, Dicle & Jiang, Yuansheng, 2023. "Modelling the impact of climate change and advanced agricultural technologies on grain output: Recent evidence from China," Ecological Modelling, Elsevier, vol. 485(C).
    3. Shizhen Bai & Xuelian Jia, 2022. "Agricultural Supply Chain Financing Strategies under the Impact of Risk Attitudes," Sustainability, MDPI, vol. 14(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mekbib G. Haile & Tesfamicheal Wossen & Kindie Tesfaye & Joachim von Braun, 2017. "Impact of Climate Change, Weather Extremes, and Price Risk on Global Food Supply," Economics of Disasters and Climate Change, Springer, vol. 1(1), pages 55-75, June.
    2. Yao, Ling & Chen, Qihui & Wu, Laping, 2018. "Heterogeneous supply response: Does high price expectation attenuate the inverse farm size-productivity relationship in China?," 2018 Annual Meeting, August 5-7, Washington, D.C. 274363, Agricultural and Applied Economics Association.
    3. Magrini, Emiliano & Morales-Opazo, Cristian & Balie, Jean, 2014. "Supply response along the value chain in selected SSA countries: the case of grains," 2014: Food, Resources and Conflict, December 7-9, 2014. San Diego, California 197193, International Agricultural Trade Research Consortium.
    4. Yu, Chengzheng & Miao, Ruiqing & Khanna, Madhu, 2021. "Maladaptation of U.S. Corn and Soybean Yields to a Changing Climate," 2021 Conference, August 17-31, 2021, Virtual 315037, International Association of Agricultural Economists.
    5. Gouel, Christophe & Laborde, David, 2021. "The crucial role of domestic and international market-mediated adaptation to climate change," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    6. Mekbib G. Haile & Matthias Kalkuhl & Joachim Braun, 2014. "Inter- and intra-seasonal crop acreage response to international food prices and implications of volatility," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 693-710, November.
    7. Haile, Mekbib G. & Kalkuhl, Matthias & von Braun, Joachim, 2013. "Short-term global crop acreage response to international food prices and implications of volatility," Discussion Papers 145308, University of Bonn, Center for Development Research (ZEF).
    8. Ahmed, Musa Hasen & Tesfaye, Wondimagegn Mesfin & Gassmann, Franziska, 2022. "Within Growing Season Weather Variability and Land Allocation Decisions: Evidence from Maize Farmers in Ethiopia," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321171, Agricultural Economics Society - AES.
    9. George E. Halkos & Apostolos S. Tsirivis, 2023. "Electricity Prices in the European Union Region: The Role of Renewable Energy Sources, Key Economic Factors and Market Liberalization," Energies, MDPI, vol. 16(6), pages 1-20, March.
    10. Gouel, Christophe & LaBorde, David, 2017. "The Crucial Role of International Trade in Adaptation to Climate Change," 2017: Globalization Adrift, December 3-5, 2017, Washington, D.C. 266841, International Agricultural Trade Research Consortium.
    11. Haile, Mekbib G. & Kalkuhl, Matthias & Braun, Joachim von, 2013. "How does food supply respond to high and volatile international food prices? An empirical evaluation of inter- and intra- seasonal global crop acreage response," 2013 Fourth International Conference, September 22-25, 2013, Hammamet, Tunisia 161472, African Association of Agricultural Economists (AAAE).
    12. Krah, Kwabena, 2022. "Maize price variability, land use change, and forestloss: evidence from Ghana," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322247, Agricultural and Applied Economics Association.
    13. Md Zabid Iqbal & Bruce A. Babcock, 2018. "Global growing‐area elasticities of key agricultural crops estimated using dynamic heterogeneous panel methods," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 681-690, November.
    14. Huynh, Cong Minh, 2022. "How does research and development affect the nexus of climate change and agricultural productivity in Asian and Pacific countries?," MPRA Paper 112628, University Library of Munich, Germany.
    15. Zhihao Zheng & Yang Gao & Rodolfo M. Nayga & Yinyu Zhao, 2023. "Policy reform and farmers' coping strategies: The case of corn price shocks in Heilongjiang Province of China," Review of Development Economics, Wiley Blackwell, vol. 27(2), pages 1135-1156, May.
    16. Nicholas J. Pates & Nathan P. Hendricks, 2021. "Fields from Afar: Evidence of Heterogeneity in United States Corn Rotational Response from Remote Sensing Data," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1759-1782, October.
    17. Haile, Mekbib G. & Kalkuhl, Matthias & Braun, Joachim von, 2013. "Inter-and intra-annual global crop acreage response to prices and price risk," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149695, Agricultural and Applied Economics Association.
    18. Stigler, Matthieu M., 2018. "Supply response at the field-level: disentangling area and yield effects," 2018 Annual Meeting, August 5-7, Washington, D.C. 274343, Agricultural and Applied Economics Association.
    19. Yu, Chengzheng & Miao, Ruiqing & Khanna, Madhu, 2021. "Maladaptation of U.S. Corn and Soybean to a Changing Climate," 2021 Conference, August 17-31, 2021, Virtual 313798, International Association of Agricultural Economists.
    20. Huynh, Cong Minh & Hoang, Hong Hiep, 2022. "Economic freedom and natural disasters’ losses: Evidence from Asia," MPRA Paper 111958, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssefpa:v:14:y:2022:i:5:d:10.1007_s12571-021-01253-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.