IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v159y2015icp35-44.html

Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China

Author

Listed:
  • Ye, Qing
  • Yang, Xiaoguang
  • Dai, Shuwei
  • Chen, Guangsheng
  • Li, Yong
  • Zhang, Caixia

Abstract

Rice is one of the main crops grown in southern China. Global climate change has significantly altered the local water availability and temperature regime for rice production. In this study, we explored the influence of climate change on suitable rice cropping areas, rice cropping systems and crop water requirements (CWRs) during the growing season for historical (from 1951 to 2010) and future (from 2011 to 2100) time periods. The results indicated that the land areas suitable for rice cropping systems shifted northward and westward from 1951 to 2100 but with different amplitudes. The land areas suitable for single rice-cropping systems (SRCS) and early double rice-cropping systems (EDRCS) decreased, whereas the land areas suitable for middle double rice-cropping systems (MDRCS) and late double rice-cropping systems (LDRCS) expanded significantly. Among the rice-cropping systems, the planting area suitable for SRCS was the largest during the historical period (1951–1980), whereas the suitable planting area for LDRCS was the largest during the future period (2070–2100). Spatially, the water requirement of rice during the growing season exhibited a decreasing trend from southeast to northwest from 1951 to 2010. Temporally, the regional water requirement of rice during the growing season decreased from 720mm (1951–1980) to 700mm (1981–2010) as a result of solar radiation and evapotranspiration. However, the water requirement was predicted to increase from 1027mm (2011–2040) to 1150mm (2071–2100). During the past six decades, the planting area suitable for double rice-cropping systems increased by 2.7×104km2 and, consequently, the CWR and irrigation water requirement (IWR) increased by 1.1×1010 and 8.8×109m3, respectively. In addition, under A1B scenarios, the CWR and IWR of double rice-cropping systems are expected to increase by 1.6×1011 and 1.2×1011m3, respectively, from 2071–2100 compared with the historical period of 1951–1980. The regional CWR and IWR were predicted to increase respectively by 8% and 6% from 2011 to 2040, by 17% and 19% from 2041 to 2070, and by 20% and 24% from 2071 to 2100 compared with 1951–1980. These increases can be attributed to climate warming, which expands the suitable planting area for multiple-cropping systems and extends the growing season for late-maturing rice varieties. Our study aims to provide a scientific guide for planning future cropping systems and optimizing water management in the southern rice cropping region of China.

Suggested Citation

  • Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
  • Handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:35-44
    DOI: 10.1016/j.agwat.2015.05.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415300135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.05.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zulu, Giveson & Toyota, Masaru & Misawa, Shin-ichi, 1996. "Characteristics of water reuse and its effects on paddy irrigation system water balance and the riceland ecosystem," Agricultural Water Management, Elsevier, vol. 31(3), pages 269-283, October.
    2. Belder, P. & Bouman, B. A. M. & Cabangon, R. & Guoan, Lu & Quilang, E. J. P. & Yuanhua, Li & Spiertz, J. H. J. & Tuong, T. P., 2004. "Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia," Agricultural Water Management, Elsevier, vol. 65(3), pages 193-210, March.
    3. Terry L. Root & Jeff T. Price & Kimberly R. Hall & Stephen H. Schneider & Cynthia Rosenzweig & J. Alan Pounds, 2003. "Fingerprints of global warming on wild animals and plants," Nature, Nature, vol. 421(6918), pages 57-60, January.
    4. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    5. Rejesus, Roderick M. & Palis, Florencia G. & Rodriguez, Divina Gracia P. & Lampayan, Ruben M. & Bouman, Bas A.M., 2011. "Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines," Food Policy, Elsevier, vol. 36(2), pages 280-288, April.
    6. De Silva, C.S. & Weatherhead, E.K. & Knox, J.W. & Rodriguez-Diaz, J.A., 2007. "Predicting the impacts of climate change--A case study of paddy irrigation water requirements in Sri Lanka," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 19-29, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    2. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    3. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    4. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    5. Annie Paradis & Joe Elkinton & Katharine Hayhoe & John Buonaccorsi, 2008. "Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 541-554, June.
    6. Robert J. Knell & Stephen J. Thackeray, 2016. "Voltinism and resilience to climate-induced phenological mismatch," Climatic Change, Springer, vol. 137(3), pages 525-539, August.
    7. Rowell, Jonathan T., 2009. "The limitation of species range: A consequence of searching along resource gradients," Theoretical Population Biology, Elsevier, vol. 75(2), pages 216-227.
    8. Lee Hannah & Marc Steele & Emily Fung & Pablo Imbach & Lorriane Flint & Alan Flint, 2017. "Climate change influences on pollinator, forest, and farm interactions across a climate gradient," Climatic Change, Springer, vol. 141(1), pages 63-75, March.
    9. Zdeněk Laštůvka, 2009. "Climate change and its possible influence on the occurrence and importance of insect pests," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 45(SpecialIs), pages 53-62.
    10. Yingjie Niu & Zhentao Zou, 2024. "Robust Abatement Policy with Uncertainty About Environmental Disasters," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(4), pages 933-965, April.
    11. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    12. Disha Sachan & Pankaj Kumar & Md. Saquib Saharwardi, 2022. "Contemporary climate change velocity for near-surface temperatures over India," Climatic Change, Springer, vol. 173(3), pages 1-19, August.
    13. Brooks, Wesley R. & Newbold, Stephen C., 2013. "Ecosystem damages in integrated assessment models of climate change," National Center for Environmental Economics-NCEE Working Papers 280912, United States Environmental Protection Agency (EPA).
    14. Ferenc L. Toth & Eva Hizsnyik, 2005. "Managing The Inconceivable: Participatory Assessments Of Impacts And Responses To Extreme Climate Change," Working Papers FNU-74, Research unit Sustainability and Global Change, Hamburg University, revised May 2005.
    15. Víctor Rincón & Javier Velázquez & Derya Gülçin & Aida López-Sánchez & Carlos Jiménez & Ali Uğur Özcan & Juan Carlos López-Almansa & Tomás Santamaría & Daniel Sánchez-Mata & Kerim Çiçek, 2023. "Mapping Priority Areas for Connectivity of Yellow-Winged Darter ( Sympetrum flaveolum , Linnaeus 1758) under Climate Change," Land, MDPI, vol. 12(2), pages 1-39, January.
    16. Elizabeth C Elliott & Stephen J Cornell, 2013. "Are Anomalous Invasion Speeds Robust to Demographic Stochasticity?," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-8, July.
    17. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    18. Sang-Don Lee, 2017. "Global Warming Leading to Phenological Responses in the Process of Urbanization, South Korea," Sustainability, MDPI, vol. 9(12), pages 1-27, November.
    19. Yu, Qian & Dai, Yulong & Wei, Jun & Wang, Jiaer & Liao, Bin & Cui, Yuanlai, 2024. "Rice yield and water productivity in response to water-saving irrigation practices in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 302(C).
    20. Jianguo Wu, 2016. "Detection and attribution of the effects of climate change on bat distributions over the last 50 years," Climatic Change, Springer, vol. 134(4), pages 681-696, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:35-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.