IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v159y2015icp35-44.html
   My bibliography  Save this article

Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China

Author

Listed:
  • Ye, Qing
  • Yang, Xiaoguang
  • Dai, Shuwei
  • Chen, Guangsheng
  • Li, Yong
  • Zhang, Caixia

Abstract

Rice is one of the main crops grown in southern China. Global climate change has significantly altered the local water availability and temperature regime for rice production. In this study, we explored the influence of climate change on suitable rice cropping areas, rice cropping systems and crop water requirements (CWRs) during the growing season for historical (from 1951 to 2010) and future (from 2011 to 2100) time periods. The results indicated that the land areas suitable for rice cropping systems shifted northward and westward from 1951 to 2100 but with different amplitudes. The land areas suitable for single rice-cropping systems (SRCS) and early double rice-cropping systems (EDRCS) decreased, whereas the land areas suitable for middle double rice-cropping systems (MDRCS) and late double rice-cropping systems (LDRCS) expanded significantly. Among the rice-cropping systems, the planting area suitable for SRCS was the largest during the historical period (1951–1980), whereas the suitable planting area for LDRCS was the largest during the future period (2070–2100). Spatially, the water requirement of rice during the growing season exhibited a decreasing trend from southeast to northwest from 1951 to 2010. Temporally, the regional water requirement of rice during the growing season decreased from 720mm (1951–1980) to 700mm (1981–2010) as a result of solar radiation and evapotranspiration. However, the water requirement was predicted to increase from 1027mm (2011–2040) to 1150mm (2071–2100). During the past six decades, the planting area suitable for double rice-cropping systems increased by 2.7×104km2 and, consequently, the CWR and irrigation water requirement (IWR) increased by 1.1×1010 and 8.8×109m3, respectively. In addition, under A1B scenarios, the CWR and IWR of double rice-cropping systems are expected to increase by 1.6×1011 and 1.2×1011m3, respectively, from 2071–2100 compared with the historical period of 1951–1980. The regional CWR and IWR were predicted to increase respectively by 8% and 6% from 2011 to 2040, by 17% and 19% from 2041 to 2070, and by 20% and 24% from 2071 to 2100 compared with 1951–1980. These increases can be attributed to climate warming, which expands the suitable planting area for multiple-cropping systems and extends the growing season for late-maturing rice varieties. Our study aims to provide a scientific guide for planning future cropping systems and optimizing water management in the southern rice cropping region of China.

Suggested Citation

  • Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
  • Handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:35-44
    DOI: 10.1016/j.agwat.2015.05.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415300135
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zulu, Giveson & Toyota, Masaru & Misawa, Shin-ichi, 1996. "Characteristics of water reuse and its effects on paddy irrigation system water balance and the riceland ecosystem," Agricultural Water Management, Elsevier, vol. 31(3), pages 269-283, October.
    2. Belder, P. & Bouman, B. A. M. & Cabangon, R. & Guoan, Lu & Quilang, E. J. P. & Yuanhua, Li & Spiertz, J. H. J. & Tuong, T. P., 2004. "Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia," Agricultural Water Management, Elsevier, vol. 65(3), pages 193-210, March.
    3. Rejesus, Roderick M. & Palis, Florencia G. & Rodriguez, Divina Gracia P. & Lampayan, Ruben M. & Bouman, Bas A.M., 2011. "Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines," Food Policy, Elsevier, vol. 36(2), pages 280-288, April.
    4. De Silva, C.S. & Weatherhead, E.K. & Knox, J.W. & Rodriguez-Diaz, J.A., 2007. "Predicting the impacts of climate change--A case study of paddy irrigation water requirements in Sri Lanka," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 19-29, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Jiang & Xin Chen & Fei Lun & Zhihua Pan & Jiaheng Niu & Chenyang Ding & Lijun Meng & Guoliang Zhang & Charles Peter Mgeni & Stefan Sieber & Pingli An, 2019. "Spatial Distribution and Changes of the Realizable Triple Cropping System in China," Sustainability, MDPI, Open Access Journal, vol. 11(6), pages 1-1, March.
    2. Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
    3. Hui Ju & Qin Liu & Yingchun Li & Xiaoxu Long & Zhongwei Liu & Erda Lin, 2020. "Multi-Stakeholder Efforts to Adapt to Climate Change in China’s Agricultural Sector," Sustainability, MDPI, Open Access Journal, vol. 12(19), pages 1-1, September.
    4. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    5. Han, Huanhao & Cui, Yuanlai & Huang, Ying & Wang, Shupeng & Duan, Qicai & Zhang, Lei, 2019. "Impacts of the channel/barrier effect and three-dimensional climate—A case study of rice water requirement and irrigation quota in Yunnan, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 317-327.
    6. Yujie Liu & Weimo Zhou & Quansheng Ge, 2019. "Spatiotemporal changes of rice phenology in China under climate change from 1981 to 2010," Climatic Change, Springer, vol. 157(2), pages 261-277, November.
    7. Rowshon, M.K. & Dlamini, N.S. & Mojid, M.A. & Adib, M.N.M. & Amin, M.S.M. & Lai, S.H., 2019. "Modeling climate-smart decision support system (CSDSS) for analyzing water demand of a large-scale rice irrigation scheme," Agricultural Water Management, Elsevier, vol. 216(C), pages 138-152.
    8. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    9. Fei Wang & Yaning Chen & Zhi Li & Gonghuan Fang & Yupeng Li & Zhenhua Xia, 2019. "Assessment of the Irrigation Water Requirement and Water Supply Risk in the Tarim River Basin, Northwest China," Sustainability, MDPI, Open Access Journal, vol. 11(18), pages 1-1, September.
    10. Xu, Guo-wei & Lu, Da-Ke & Wang, He-Zheng & Li, Youjun, 2018. "Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate," Agricultural Water Management, Elsevier, vol. 203(C), pages 385-394.
    11. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, Open Access Journal, vol. 12(10), pages 1-1, May.
    12. Hong, Eun-Mi & Nam, Won-Ho & Choi, Jin-Yong & Pachepsky, Yakov A., 2016. "Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea," Agricultural Water Management, Elsevier, vol. 165(C), pages 163-180.
    13. Pan, Junfeng & Liu, Yanzhuo & Zhong, Xuhua & Lampayan, Rubenito M. & Singleton, Grant R. & Huang, Nongrong & Liang, Kaiming & Peng, Bilin & Tian, Ka, 2017. "Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China," Agricultural Water Management, Elsevier, vol. 184(C), pages 191-200.
    14. Ding, Yimin & Wang, Weiguang & Zhuang, Qianlai & Luo, Yufeng, 2020. "Adaptation of paddy rice in China to climate change: The effects of shifting sowing date on yield and irrigation water requirement," Agricultural Water Management, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:35-44. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.