IDEAS home Printed from
   My bibliography  Save this article

Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines


  • Rejesus, Roderick M.
  • Palis, Florencia G.
  • Rodriguez, Divina Gracia P.
  • Lampayan, Ruben M.
  • Bouman, Bas A.M.


This article evaluates the impacts of a controlled irrigation technique in rice production called alternate wetting and drying (AWD). Propensity score matching (PSM) and regression-based approaches applied to farm-level survey data are used to achieve the objective of the study. The PSM and regression-based approach accounts for the potential bias due to selection problems from observable variables. Results of the impact analysis using both empirical approaches indicate that AWD, particularly the "Safe AWD" variant, reduces the hours of irrigation use (by about 38%), without a statistically significant reduction in yields and profits. This reduction in irrigation time translates to corresponding savings in the amount of irrigation water and pumping energy used. However, further analysis of the impact estimates suggests that the potential magnitude of the selection bias based on unobservable variables may still be able to eliminate the measured impact from the PSM and regression-based techniques that only control for selection based on observable variables. Hence, the current impact results have to be interpreted with caution and further data collection is needed to construct a panel data that would allow one to account for selection problems due to unobservable variables and, consequently, better estimate the AWD impact.

Suggested Citation

  • Rejesus, Roderick M. & Palis, Florencia G. & Rodriguez, Divina Gracia P. & Lampayan, Ruben M. & Bouman, Bas A.M., 2011. "Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines," Food Policy, Elsevier, vol. 36(2), pages 280-288, April.
  • Handle: RePEc:eee:jfpoli:v:36:y:2011:i:2:p:280-288

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 151-184, February.
    2. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, April.
    3. Jeffrey M. Peterson & Ya Ding, 2005. "Economic Adjustments to Groundwater Depletion in the High Plains: Do Water-Saving Irrigation Systems Save Water?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(1), pages 147-159.
    4. Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2006. "Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 657-670.
    5. Godtland, Erin M & Sadoulet, Elisabeth & De Janvry, Alain & Murgai, Rinku & Ortiz, Oscar, 2004. "The Impact of Farmer Field Schools on Knowledge and Productivity: A Study of Potato Farmers in the Peruvian Andes," Economic Development and Cultural Change, University of Chicago Press, vol. 53(1), pages 63-92, October.
    6. Abdulai, Awudu & Glauben, Thomas & Herzfeld, Thomas & Zhou, Shudong, 2005. "Water Saving Technology in Chinese Rice Production - Evidence from Survey Data," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24708, European Association of Agricultural Economists.
    7. Tabbal, D. F. & Bouman, B. A. M. & Bhuiyan, S. I. & Sibayan, E. B. & Sattar, M. A., 2002. "On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines," Agricultural Water Management, Elsevier, vol. 56(2), pages 93-112, July.
    8. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    9. Cabangon, R. J. & Castillo, E. G. & Lu, G. & Cui, Y. L. & Tuong, T. P. & Bouman, B. A. M. & Li, Y. & Chen, C. & Wang, J. & Liu, X., 2001. "Impact of alternate wetting and drying irrigation on rice growth and resource-use efficiency," Conference Papers h027863, International Water Management Institute.
    10. Blanke, Amelia & Rozelle, Scott & Lohmar, Bryan & Wang, Jinxia & Huang, Jikun, 2005. "Rural Water Saving Technology Adoption in Northern China: An Analysis of Survey Data," 2005 Annual meeting, July 24-27, Providence, RI 19437, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Sascha O. Becker & Andrea Ichino, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 2(4), pages 358-377, November.
    12. Anderson, David P. & Wilson, Paul N. & Thompson, Gary D., 1999. "The Adoption And Diffusion Of Level Fields And Basins," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 24(01), July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. M. MEHEDI HASAN & Md. ABDUR RASHID SARKER & JEFF GOW, 2016. "Assessment Of Climate Change Impacts On Aman And Boro Rice Yields In Bangladesh," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 1-21, August.
    2. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    3. repec:eee:agiwat:v:196:y:2018:i:c:p:154-161 is not listed on IDEAS
    4. Garbero, Alessandra & Songsermsawas, Tisorn, 2016. "Impact of modern irrigation on household production and welfare outcomes: Evidence from the PASIDP project in Ethiopia," 2016 Annual Meeting, July 31-August 2, 2016, Boston, Massachusetts 235949, Agricultural and Applied Economics Association.
    5. Averett, Susan L. & Terrizzi, Sabrina & Wang, Yang, 2013. "The Effect of Sorority Membership on Eating Disorders and Body Mass Index," IZA Discussion Papers 7512, Institute for the Study of Labor (IZA).
    6. Borin, José Bernardo Moraes & Carmona, Felipe de Campos & Anghinoni, Ibanor & Martins, Amanda Posselt & Jaeger, Isadora Rodrigues & Marcolin, Elio & Hernandes, Gustavo Cantori & Camargo, Estefânia Sil, 2016. "Soil solution chemical attributes, rice response and water use efficiency under different flood irrigation management methods," Agricultural Water Management, Elsevier, vol. 176(C), pages 9-17.
    7. Rusike, J. & Mahungu, N.M. & Lukombo, S.S. & Kendenga, T. & Bidiaka, S.M. & Alene, A. & Lema, A. & Manyong, V.M., 2014. "Does a cassava research-for-development program have impact at the farm level? Evidence from the Democratic Republic of Congo," Food Policy, Elsevier, vol. 46(C), pages 193-204.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfpoli:v:36:y:2011:i:2:p:280-288. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.