IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i2p298-d1042336.html
   My bibliography  Save this article

Mapping Priority Areas for Connectivity of Yellow-Winged Darter ( Sympetrum flaveolum , Linnaeus 1758) under Climate Change

Author

Listed:
  • Víctor Rincón

    (Faculty of Pharmacy, Department of Pharmacology, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain)

  • Javier Velázquez

    (Department of Environment and Agroforestry, Faculty of Sciences and Arts, Catholic University of Ávila, 05005 Ávila, Spain)

  • Derya Gülçin

    (Department of Landscape Architecture, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın 09100, Turkey)

  • Aida López-Sánchez

    (Department of Environment and Agroforestry, Faculty of Sciences and Arts, Catholic University of Ávila, 05005 Ávila, Spain)

  • Carlos Jiménez

    (Department of Environment and Agroforestry, Faculty of Sciences and Arts, Catholic University of Ávila, 05005 Ávila, Spain)

  • Ali Uğur Özcan

    (Department of Landscape Architecture, Faculty of Forestry, Çankırı Karatekin University, Çankırı 18200, Turkey)

  • Juan Carlos López-Almansa

    (Department of Environment and Agroforestry, Faculty of Sciences and Arts, Catholic University of Ávila, 05005 Ávila, Spain)

  • Tomás Santamaría

    (Department of Environment and Agroforestry, Faculty of Sciences and Arts, Catholic University of Ávila, 05005 Ávila, Spain)

  • Daniel Sánchez-Mata

    (Faculty of Pharmacy, Department of Pharmacology, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain)

  • Kerim Çiçek

    (Faculty of Science, Department of Biology, Section of Zoology, Ege University, Izmir 35100, Turkey
    Natural History Application and Research Centre, Ege University, Izmir 35100, Turkey)

Abstract

The yellow-winged darter ( Sympetrum flaveolum Linnaeus, 1758, Odonata), which is associated with high mountain areas, can be considered a flagship species. Due to climate change, its natural range will be negatively affected. In this study, we propose global potential distributions for this species up to the year 2100, considering four time periods (2021–2040, 2041–2060, 2061–2080, and 2081–2100) and three shared socioeconomic pathways (optimistic—SSP245, middle of the road—SSP370, and worst—SSP585), by using an ecological niche model to produce two sets of distribution models (80% to 100% and 60% to 100%). It is foreseen that in the worst of the considered climate scenario (SSP585– 2100 year), the distribution of this species could be reduced by almost half, which could pose a risk for the species and provoke the shift from vulnerable to endangered. An analysis of connectivity has also been carried out for all the studied scenarios by applying the MSPA and PC indices, showing that the core habitat of this species will become more important, which is consistent with the decrease in the distribution range. Over time, the importance of the most valuable connectors will increase, implying a greater risk of some populations becoming isolated.

Suggested Citation

  • Víctor Rincón & Javier Velázquez & Derya Gülçin & Aida López-Sánchez & Carlos Jiménez & Ali Uğur Özcan & Juan Carlos López-Almansa & Tomás Santamaría & Daniel Sánchez-Mata & Kerim Çiçek, 2023. "Mapping Priority Areas for Connectivity of Yellow-Winged Darter ( Sympetrum flaveolum , Linnaeus 1758) under Climate Change," Land, MDPI, vol. 12(2), pages 1-39, January.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:298-:d:1042336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/2/298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/2/298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David M. Konisky & Llewelyn Hughes & Charles H. Kaylor, 2016. "Extreme weather events and climate change concern," Climatic Change, Springer, vol. 134(4), pages 533-547, February.
    2. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    3. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    4. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    5. David Konisky & Llewelyn Hughes & Charles Kaylor, 2016. "Extreme weather events and climate change concern," Climatic Change, Springer, vol. 134(4), pages 533-547, February.
    6. Wilfried Thuiller, 2007. "Climate change and the ecologist," Nature, Nature, vol. 448(7153), pages 550-552, August.
    7. Ji-Zhong Wan & Chun-Jing Wang & Fei-Hai Yu, 2017. "Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change," Climatic Change, Springer, vol. 144(2), pages 303-316, September.
    8. Terry L. Root & Jeff T. Price & Kimberly R. Hall & Stephen H. Schneider & Cynthia Rosenzweig & J. Alan Pounds, 2003. "Fingerprints of global warming on wild animals and plants," Nature, Nature, vol. 421(6918), pages 57-60, January.
    9. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brooks, Wesley R. & Newbold, Stephen C., 2014. "An updated biodiversity nonuse value function for use in climate change integrated assessment models," Ecological Economics, Elsevier, vol. 105(C), pages 342-349.
    2. Sébastien Nusslé & Kathleen R Matthews & Stephanie M Carlson, 2015. "Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-22, November.
    3. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    4. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    5. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    6. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    7. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    8. Sang-Don Lee, 2017. "Global Warming Leading to Phenological Responses in the Process of Urbanization, South Korea," Sustainability, MDPI, vol. 9(12), pages 1-27, November.
    9. Lei Zhang & Zhinong Jing & Zuyao Li & Yang Liu & Shengzuo Fang, 2019. "Predictive Modeling of Suitable Habitats for Cinnamomum Camphora (L.) Presl Using Maxent Model under Climate Change in China," IJERPH, MDPI, vol. 16(17), pages 1-16, August.
    10. Yuncheng Zhao & Mingyue Zhao & Lei Zhang & Chunyi Wang & Yinlong Xu, 2021. "Predicting Possible Distribution of Tea ( Camellia sinensis L.) under Climate Change Scenarios Using MaxEnt Model in China," Agriculture, MDPI, vol. 11(11), pages 1-18, November.
    11. Dissanayake, Sahan T.M. & Önal, Hayri & Westervelt, James D. & Balbach, Harold E., 2012. "Incorporating species relocation in reserve design models: An example from Ft. Benning GA," Ecological Modelling, Elsevier, vol. 224(1), pages 65-75.
    12. Jing Zhen & Xinyuan Wang & Qingkai Meng & Jingwei Song & Ying Liao & Bo Xiang & Huadong Guo & Chuansheng Liu & Ruixia Yang & Lei Luo, 2018. "Fine-Scale Evaluation of Giant Panda Habitats and Countermeasures against the Future Impacts of Climate Change and Human Disturbance (2015–2050): A Case Study in Ya’an, China," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    13. Kato, E., 2009. "Soil and water conservation technologies: a buffer against production risk in the face of climate change?: insights from the Nile Basin in Ethiopia," IWMI Working Papers H042477, International Water Management Institute.
    14. Sanghun Lee & Baek-Jun Kim & Kon Joon Bhang, 2019. "Habitat Analysis of Endangered Korean Long-Tailed Goral ( Naemorhedus caudatus raddeanus ) with Weather Forecasting Model," Sustainability, MDPI, vol. 11(21), pages 1-13, November.
    15. Omann, Ines & Stocker, Andrea & Jäger, Jill, 2009. "Climate change as a threat to biodiversity: An application of the DPSIR approach," Ecological Economics, Elsevier, vol. 69(1), pages 24-31, November.
    16. V. P. Khanduri & C. M. Sharma & S. P. Singh, 2008. "The effects of climate change on plant phenology," Environment Systems and Decisions, Springer, vol. 28(2), pages 143-147, June.
    17. Guanjie Jiao & Xiawei Shentu & Xiaochen Zhu & Wenbo Song & Yujia Song & Kexuan Yang, 2022. "Utility of Deep Learning Algorithms in Initial Flowering Period Prediction Models," Agriculture, MDPI, vol. 12(12), pages 1-17, December.
    18. Dubravka Milić & Snežana Radenković & Dimitrije Radišić & Andrijana Andrić & Tijana Nikolić & Ante Vujić, 2019. "Stability and changes in the distribution of Pipiza hoverflies (Diptera, Syrphidae) in Europe under projected future climate conditions," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-19, September.
    19. Dragomir, Lucian & Dragomir, Robert, 2019. "Climate Change And Its Interaction With Natural, Economic And Social Processes," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 19(2), pages 125-138.
    20. Gregorio Moreno-Rueda & Juan Pleguezuelos & Esmeralda Alaminos, 2009. "Climate warming and activity period extension in the Mediterranean snake Malpolon monspessulanus," Climatic Change, Springer, vol. 92(1), pages 235-242, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:298-:d:1042336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.