IDEAS home Printed from https://ideas.repec.org/a/spr/ssefpa/v12y2020i1d10.1007_s12571-019-00981-4.html
   My bibliography  Save this article

Unravelling the variability and causes of smallholder maize yield gaps in Ethiopia

Author

Listed:
  • Banchayehu Tessema Assefa

    (Wageningen University)

  • Jordan Chamberlin

    (International Maize and Wheat Improvement Center (CIMMYT))

  • Pytrik Reidsma

    (Wageningen University)

  • João Vasco Silva

    (Wageningen University
    Wageningen University)

  • Martin K. Ittersum

    (Wageningen University)

Abstract

Ethiopia has achieved the second highest maize yield in sub-Saharan Africa. Yet, farmers’ maize yields are still much lower than on-farm and on-station trial yields, and only ca. 20% of the estimated water-limited potential yield. This article provides a comprehensive national level analysis of the drivers of maize yields in Ethiopia, by decomposing yield gaps into efficiency, resource and technology components, and accounting for a broad set of detailed input and crop management choices. Stochastic frontier analysis was combined with concepts of production ecology to estimate and explain technically efficient yields, the efficiency yield gap and the resource yield gap. The technology yield gap was estimated based on water-limited potential yields from the Global Yield Gap Atlas. The relative magnitudes of the efficiency, resource and technology yield gaps differed across farming systems; they ranged from 15% (1.6 t/ha) to 21% (1.9 t/ha), 12% (1.3 t/ha) to 25% (2.3 t/ha) and 54% (4.8 t/ha) to 73% (7.8 t/ha), respectively. Factors that reduce the efficiency yield gap include: income from non-farm sources, value of productive assets, education and plot distance from home. The resource yield gap can be explained by sub-optimal input use, from a yield perspective. The technology yield gap comprised the largest share of the total yield gap, partly due to limited use of fertilizer and improved seeds. We conclude that targeted but integrated policy design and implementation is required to narrow the overall maize yield gap and improve food security.

Suggested Citation

  • Banchayehu Tessema Assefa & Jordan Chamberlin & Pytrik Reidsma & João Vasco Silva & Martin K. Ittersum, 2020. "Unravelling the variability and causes of smallholder maize yield gaps in Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(1), pages 83-103, February.
  • Handle: RePEc:spr:ssefpa:v:12:y:2020:i:1:d:10.1007_s12571-019-00981-4
    DOI: 10.1007/s12571-019-00981-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12571-019-00981-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12571-019-00981-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsedeke Abate & Bekele Shiferaw & Abebe Menkir & Dagne Wegary & Yilma Kebede & Kindie Tesfaye & Menale Kassie & Gezahegn Bogale & Berhanu Tadesse & Tolera Keno, 2015. "Factors that transformed maize productivity in Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(5), pages 965-981, October.
    2. Coelli, Tim J., 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 1-27, December.
    3. Giller, K.E. & Tittonell, P. & Rufino, M.C. & van Wijk, M.T. & Zingore, S. & Mapfumo, P. & Adjei-Nsiah, S. & Herrero, M. & Chikowo, R. & Corbeels, M. & Rowe, E.C. & Baijukya, F. & Mwijage, A. & Smith,, 2011. "Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development," Agricultural Systems, Elsevier, vol. 104(2), pages 191-203, February.
    4. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    5. Dorosh, Paul A. & Rashid, Shahidur, 2012. "Food and agriculture in Ethiopia: Progress and policy challenges," IFPRI books, International Food Policy Research Institute (IFPRI), number 978-0-81224-529-5 edited by Dorosh, Paul A. & Rashid, Shahidur.
    6. Dorosh, Paul A. & Rashid, Shahidur, 2012. "Introduction [In Food and agriculture in Ethiopia: Progress and policy challenges]," IFPRI book chapters, in: Dorosh, Paul A. & Rashid, Shahidur (ed.), Food and agriculture in Ethiopia: Progress and policy challenges, chapter 1, International Food Policy Research Institute (IFPRI).
    7. Dzanku, Fred M. & Jirström, Magnus & Marstorp, Håkan, 2015. "Yield Gap-Based Poverty Gaps in Rural Sub-Saharan Africa," World Development, Elsevier, vol. 67(C), pages 336-362.
    8. Murtazashvili, Irina & Wooldridge, Jeffrey M., 2016. "A control function approach to estimating switching regression models with endogenous explanatory variables and endogenous switching," Journal of Econometrics, Elsevier, vol. 190(2), pages 252-266.
    9. van Dijk, Michiel & Morley, Tom & Jongeneel, Roel & van Ittersum, Martin & Reidsma, Pytrik & Ruben, Ruerd, 2017. "Disentangling agronomic and economic yield gaps: An integrated framework and application," Agricultural Systems, Elsevier, vol. 154(C), pages 90-99.
    10. Di Zeng & Jeffrey Alwang & George W. Norton & Bekele Shiferaw & Moti Jaleta & Chilot Yirga, 2015. "Ex post impacts of improved maize varieties on poverty in rural Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 46(4), pages 515-526, July.
    11. Tittonell, P. & Muriuki, A. & Shepherd, K.D. & Mugendi, D. & Kaizzi, K.C. & Okeyo, J. & Verchot, L. & Coe, R. & Vanlauwe, B., 2010. "The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa - A typology of smallholder farms," Agricultural Systems, Elsevier, vol. 103(2), pages 83-97, February.
    12. Moti Jaleta & Menale Kassie & Paswel Marenya & Chilot Yirga & Olaf Erenstein, 2018. "Impact of improved maize adoption on household food security of maize producing smallholder farmers in Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(1), pages 81-93, February.
    13. Mogues, Tewodaj & Yu, Bingxin & Fan, Shenggen & McBride, Linden, 2012. "The impacts of public investment in and for agriculture: synthesis of the existing evidence," ESA Working Papers 288994, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    14. Neumann, Kathleen & Verburg, Peter H. & Stehfest, Elke & Müller, Christoph, 2010. "The yield gap of global grain production: A spatial analysis," Agricultural Systems, Elsevier, vol. 103(5), pages 316-326, June.
    15. Griffiths, William E. & Hajargasht, Gholamreza, 2016. "Some models for stochastic frontiers with endogeneity," Journal of Econometrics, Elsevier, vol. 190(2), pages 341-348.
    16. E.T. Seyoum & G.E. Battese & E.M. Fleming, 1998. "Technical efficiency and productivity of maize producers in eastern Ethiopia: a study of farmers within and outside the Sasakawa‐Global 2000 project," Agricultural Economics, International Association of Agricultural Economists, vol. 19(3), pages 341-348, December.
    17. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    18. Silva, João Vasco & Baudron, Frédéric & Reidsma, Pytrik & Giller, Ken E., 2019. "Is labour a major determinant of yield gaps in sub-Saharan Africa? A study of cereal-based production systems in Southern Ethiopia," Agricultural Systems, Elsevier, vol. 174(C), pages 39-51.
    19. Seyoum, E. T. & Battese, G. E. & Fleming, E. M., 1998. "Technical efficiency and productivity of maize producers in eastern Ethiopia: a study of farmers within and outside the Sasakawa-Global 2000 project," Agricultural Economics, Blackwell, vol. 19(3), pages 341-348, December.
    20. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    21. Assuncao, Juliano J. & Ghatak, Maitreesh, 2003. "Can unobserved heterogeneity in farmer ability explain the inverse relationship between farm size and productivity," Economics Letters, Elsevier, vol. 80(2), pages 189-194, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhichao An & Chong Wang & Xiaoqiang Jiao & Zhongliang Kong & Wei Jiang & Dong Zhang & Wenqi Ma & Fusuo Zhang, 2021. "Methodology of Analyzing Maize Density Loss in Smallholder’s Fields and Potential Optimize Approach," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
    2. Kosmowski, Frederic & Chamberlin, Jordan & Ayalew, Hailemariam & Sida, Tesfaye & Abay, Kibrom & Craufurd, Peter, 2021. "How accurate are yield estimates from crop cuts? Evidence from smallholder maize farms in Ethiopia," Food Policy, Elsevier, vol. 102(C).
    3. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, 2022. "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).
    4. Marcos Jiménez Martínez & Christine Fürst, 2021. "Simulating the Capacity of Rainfed Food Crop Species to Meet Social Demands in Sudanian Savanna Agro-Ecologies," Land, MDPI, vol. 10(8), pages 1-28, August.
    5. Markhof,Yannick Valentin & Ponzini,Giulia & Wollburg,Philip Randolph, 2022. "Measuring Disaster Crop Production Losses Using Survey Microdata : Evidence from Sub-Saharan Africa," Policy Research Working Paper Series 9968, The World Bank.
    6. Dong-Gill Kim & Elisa Grieco & Antonio Bombelli & Jonathan E. Hickman & Alberto Sanz-Cobena, 2021. "Challenges and opportunities for enhancing food security and greenhouse gas mitigation in smallholder farming in sub-Saharan Africa. A review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 457-476, April.
    7. Mary Ollenburger & Page Kyle & Xin Zhang, 2022. "Uncertainties in estimating global potential yields and their impacts for long-term modeling," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1177-1190, October.
    8. Abebayehu Girma Geffersa & Frank Wogbe Agbola & Amir Mahmood, 2022. "Modelling technical efficiency and technology gap in smallholder maize sector in Ethiopia: accounting for farm heterogeneity," Applied Economics, Taylor & Francis Journals, vol. 54(5), pages 506-521, January.
    9. Abebayehu Girma Geffersa & Frank W. Agbola & Amir Mahmood, 2022. "Improved maize adoption and impacts on farm household welfare: Evidence from rural Ethiopia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 860-886, October.
    10. Olaf Erenstein & Moti Jaleta & Kai Sonder & Khondoker Mottaleb & B.M. Prasanna, 2022. "Global maize production, consumption and trade: trends and R&D implications," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1295-1319, October.
    11. Shalander Kumar & Abhishek Das & Michael Hauser & Geoffrey Muricho & Tulu Degefu & Asnake Fikre & Chris Ojiewo & Setotaw Ferede & Rajeev K. Varshney, 2022. "Estimating the potential to close yield gaps through increased efficiency of chickpea production in Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1241-1258, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, 2022. "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).
    2. Ragasa, Catherine & Mazunda, John, 2018. "The impact of agricultural extension services in the context of a heavily subsidized input system: The case of Malawi," World Development, Elsevier, vol. 105(C), pages 25-47.
    3. Binam, Joachim Nyemeck & Tonye, Jean & wandji, Njankoua & Nyambi, Gwendoline & Akoa, Mireille, 2004. "Factors affecting the technical efficiency among smallholder farmers in the slash and burn agriculture zone of Cameroon," Food Policy, Elsevier, vol. 29(5), pages 531-545, October.
    4. Djuraeva, Mukhayyo & Bobojonov, Ihtiyor & Kuhn, Lena & Glauben, Thomas, 2023. "The impact of agricultural extension type and form on technical efficiency under transition: An empirical assessment of wheat production in Uzbekistan," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 203-221.
    5. Abebayehu Girma Geffersa & Frank W. Agbola & Amir Mahmood, 2022. "Improved maize adoption and impacts on farm household welfare: Evidence from rural Ethiopia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 860-886, October.
    6. Chirwa Ephraim W., 2007. "Sources of Technical Efficiency among Smallholder Maize Farmers in Southern Malawi," Working Papers 172, African Economic Research Consortium, Research Department.
    7. U Pascual, 2001. "Soil Degradation and Technical Efficiency in Shifting Cultivation: The Case of Yucatán (Mexico)," Economics Discussion Paper Series 0116, Economics, The University of Manchester.
    8. van Dijk, Michiel & Morley, Tomas & van Loon, Marloes & Reidsma, Pytrik & Tesfaye, Kindie & van Ittersum, Martin K., 2020. "Reducing the maize yield gap in Ethiopia: Decomposition and policy simulation," Agricultural Systems, Elsevier, vol. 183(C).
    9. Zhiqi Sun & Ruifa Hu & Yu Hong, 2022. "Does yield gap still matter? Evidence from rice production in China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 829-840, June.
    10. Markose Chekol Zewdie & Michele Moretti & Daregot Berihun Tenessa & Zemen Ayalew Ayele & Jan Nyssen & Enyew Adgo Tsegaye & Amare Sewnet Minale & Steven Van Passel, 2021. "Agricultural Technical Efficiency of Smallholder Farmers in Ethiopia: A Stochastic Frontier Approach," Land, MDPI, vol. 10(3), pages 1-17, March.
    11. Musa Hasen Ahmed & Kassahun Mamo Geleta & Aemro Tazeze & Hiwot Mekonnen Mesfin & Eden Andualem Tilahun, 2017. "Cropping systems diversification, improved seed, manure and inorganic fertilizer adoption by maize producers of eastern Ethiopia," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-16, December.
    12. Medhin, Haileselassie A. & Köhlin, Gunnar, 2008. "Soil Conservation and Small-Scale Food Production in Highland Ethiopia: A Stochastic Metafrontier Approach," RFF Working Paper Series dp-08-22-efd, Resources for the Future.
    13. Dimitris Christopoulos & Margarita Genius & Vangelis Tzouvelekas, 2021. "Farm and non-farm labor decisions and household efficiency," Journal of Productivity Analysis, Springer, vol. 56(1), pages 15-31, August.
    14. Henderson, B. & Godde, C. & Medina-Hidalgo, D. & van Wijk, M. & Silvestri, S. & Douxchamps, S. & Stephenson, E. & Power, B. & Rigolot, C. & Cacho, O. & Herrero, M., 2016. "Closing system-wide yield gaps to increase food production and mitigate GHGs among mixed crop–livestock smallholders in Sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 143(C), pages 106-113.
    15. Phu Nguyen-Van & Nguyen To-The, 2016. "Technical efficiency and agricultural policy: evidence from the teaproduction in Vietnam," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 97(3), pages 173-184.
    16. Bozoglu, Mehmet & Ceyhan, Vedat, 2007. "Measuring the technical efficiency and exploring the inefficiency determinants of vegetable farms in Samsun province, Turkey," Agricultural Systems, Elsevier, vol. 94(3), pages 649-656, June.
    17. Olli-Pekka Kuusela & Maria S. Bowman & Gregory S. Amacher & Richard B. Howarth & Nadine T. Laporte, 2020. "Does infrastructure and resource access matter for technical efficiency? An empirical analysis of fishing and fuelwood collection in Mozambique," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 1811-1837, March.
    18. Basanta R. Dhungana & Peter L. Nuthall & Gilbert V. Nartea, 2004. "Measuring the economic inefficiency of Nepalese rice farms using data envelopment analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 48(2), pages 347-369, June.
    19. Nelson Mango & Clifton Makate & Benjamin Hanyani-Mlambo & Shephard Siziba & Mark Lundy & Caroline Elliott, 2015. "A stochastic frontier analysis of technical efficiency in smallholder maize production in Zimbabwe: The post-fast-track land reform outlook," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1117189-111, December.
    20. Athukorala, Wasantha & Lee, Boon L. & Wilson, Clevo & Fujii, Hidemichi & Managi, Shunsuke, 2023. "Measuring the impact of pesticide exposure on farmers’ health and farm productivity," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 851-862.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ssefpa:v:12:y:2020:i:1:d:10.1007_s12571-019-00981-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.