IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v104y2011i2p191-203.html
   My bibliography  Save this article

Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development

Author

Listed:
  • Giller, K.E.
  • Tittonell, P.
  • Rufino, M.C.
  • van Wijk, M.T.
  • Zingore, S.
  • Mapfumo, P.
  • Adjei-Nsiah, S.
  • Herrero, M.
  • Chikowo, R.
  • Corbeels, M.
  • Rowe, E.C.
  • Baijukya, F.
  • Mwijage, A.
  • Smith, J.
  • Yeboah, E.
  • van der Burg, W.J.
  • Sanogo, O.M.
  • Misiko, M.
  • de Ridder, N.
  • Karanja, S.
  • Kaizzi, C.
  • K'ungu, J.
  • Mwale, M.
  • Nwaga, D.
  • Pacini, C.
  • Vanlauwe, B.

Abstract

African farming systems are highly heterogeneous: between agroecological and socioeconomic environments, in the wide variability in farmers' resource endowments and in farm management. This means that single solutions (or 'silver bullets') for improving farm productivity do not exist. Yet to date few approaches to understand constraints and explore options for change have tackled the bewildering complexity of African farming systems. In this paper we describe the Nutrient Use in Animal and Cropping systems - Efficiencies and Scales (NUANCES) framework. NUANCES offers a structured approach to unravel and understand the complexity of African farming to identify what we term 'best-fit' technologies - technologies targeted to specific types of farmers and to specific niches within their farms. The NUANCES framework is not 'just another computer model'! We combine the tools of systems analysis and experimentation, detailed field observations and surveys, incorporate expert knowledge (local knowledge and results of research), generate databases, and apply simulation models to analyse performance of farms, and the impacts of introducing new technologies. We have analysed and described complexity of farming systems, their external drivers and some of the mechanisms that result in (in)efficient use of scarce resources. Studying sites across sub-Saharan Africa has provided insights in the trajectories of change in farming systems in response to population growth, economic conditions and climate variability (cycles of drier and wetter years) and climate change. In regions where human population is dense and land scarce, farm typologies have proven useful to target technologies between farmers of different production objectives and resource endowment (notably in terms of land, labour and capacity for investment). In such regions we could categorise types of fields on the basis of their responsiveness to soil improving technologies along soil fertility gradients, relying on local indicators to differentiate those that may be managed through 'maintenance fertilization' from fields that are highly-responsive to fertilizers and fields that require rehabilitation before yields can improved. Where human population pressure on the land is less intense, farm and field types are harder to discern, without clear patterns. Nutrient cycling through livestock is in principle not efficient for increasing food production due to increased nutrient losses, but is attractive for farmers due to the multiple functions of livestock. We identified trade-offs between income generation, soil conservation and community agreements through optimising concurrent objectives at farm and village levels. These examples show that future analyses must focus at farm and farming system level and not at the level of individual fields to achieve appropriate targeting of technologies - both between locations and between farms at any given location. The approach for integrated assessment described here can be used ex ante to explore the potential of best-fit technologies and the ways they can be best combined at farm level. The dynamic and integrated nature of the framework allows the impact of changes in external drivers such as climate change or development policy to be analysed. Fundamental questions for integrated analysis relate to the site-specific knowledge and the simplification of processes required to integrate and move from one level to the next.

Suggested Citation

  • Giller, K.E. & Tittonell, P. & Rufino, M.C. & van Wijk, M.T. & Zingore, S. & Mapfumo, P. & Adjei-Nsiah, S. & Herrero, M. & Chikowo, R. & Corbeels, M. & Rowe, E.C. & Baijukya, F. & Mwijage, A. & Smith,, 2011. "Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development," Agricultural Systems, Elsevier, vol. 104(2), pages 191-203, February.
  • Handle: RePEc:eee:agisys:v:104:y:2011:i:2:p:191-203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(10)00093-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fafchamps, Marcel & Udry, Christopher & Czukas, Katherine, 1998. "Drought and saving in West Africa: are livestock a buffer stock?," Journal of Development Economics, Elsevier, vol. 55(2), pages 273-305, April.
    2. Herrero, M. & Gonzalez-Estrada, E. & Thornton, P.K. & Quiros, C. & Waithaka, M.M. & Ruiz, R. & Hoogenboom, G., 2007. "IMPACT: Generic household-level databases and diagnostics tools for integrated crop-livestock systems analysis," Agricultural Systems, Elsevier, vol. 92(1-3), pages 240-265, January.
    3. Birner, Regina & Davis, Kristin & Pender, John & Nkonya, Ephraim & Anandajayasekeram, Pooniah & Ekboir, Javier M. & Mbabu, Adiel N. & Spielman, David J. & Horna, Daniela & Benin, Samuel & Kisamba-Muge, 2006. "From "best practice" to "best fit": a framework for designing and analyzing pluralistic agricultural advisory services," Research briefs 4, International Food Policy Research Institute (IFPRI).
    4. Tittonell, P. & Vanlauwe, B. & de Ridder, N. & Giller, K.E., 2007. "Heterogeneity of crop productivity and resource use efficiency within smallholder Kenyan farms: Soil fertility gradients or management intensity gradients?," Agricultural Systems, Elsevier, vol. 94(2), pages 376-390, May.
    5. van Wijk, Mark T. & Tittonell, Pablo & Rufino, Mariana C. & Herrero, Mario & Pacini, Cesare & Ridder, Nico de & Giller, Ken E., 2009. "Identifying key entry-points for strategic management of smallholder farming systems in sub-Saharan Africa using the dynamic farm-scale simulation model NUANCES-FARMSIM," Agricultural Systems, Elsevier, vol. 102(1-3), pages 89-101, October.
    6. Stefan Dercon, 2002. "Income Risk, Coping Strategies, and Safety Nets," World Bank Research Observer, World Bank Group, vol. 17(2), pages 141-166, September.
    7. Tittonell, P. & Muriuki, A. & Shepherd, K.D. & Mugendi, D. & Kaizzi, K.C. & Okeyo, J. & Verchot, L. & Coe, R. & Vanlauwe, B., 2010. "The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa - A typology of smallholder farms," Agricultural Systems, Elsevier, vol. 103(2), pages 83-97, February.
    8. Tittonell, P. & van Wijk, M.T. & Rufino, M.C. & Vrugt, J.A. & Giller, K.E., 2007. "Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega district, western Kenya," Agricultural Systems, Elsevier, vol. 95(1-3), pages 76-95, December.
    9. Giller, Ken E. & Rowe, Ed C. & de Ridder, Nico & van Keulen, Herman, 2006. "Resource use dynamics and interactions in the tropics: Scaling up in space and time," Agricultural Systems, Elsevier, vol. 88(1), pages 8-27, April.
    10. John Hoddinott, 2006. "Shocks and their consequences across and within households in Rural Zimbabwe," Journal of Development Studies, Taylor & Francis Journals, vol. 42(2), pages 301-321.
    11. Henk A. J. Moll, 2005. "Costs and benefits of livestock systems and the role of market and nonmarket relationships," Agricultural Economics, International Association of Agricultural Economists, vol. 32(2), pages 181-193, March.
    12. Staal, S.J. & Baltenweck, Isabelle & Waithaka, M.M. & deWolff, T. & Njoroge, L., 2002. "Location and uptake: integrated household and GIS analysis of technology adoption and land use, with application to smallholder dairy farms in Kenya," Agricultural Economics of Agricultural Economists, International Association of Agricultural Economists, vol. 27(3), November.
    13. Staal, S. J. & Baltenweck, I. & Waithaka, M. M. & deWolff, T. & Njoroge, L., 2002. "Location and uptake: integrated household and GIS analysis of technology adoption and land use, with application to smallholder dairy farms in Kenya," Agricultural Economics, Blackwell, vol. 27(3), pages 295-315, November.
    14. Tittonell, P. & van Wijk, M.T. & Herrero, M. & Rufino, M.C. & de Ridder, N. & Giller, K.E., 2009. "Beyond resource constraints - Exploring the biophysical feasibility of options for the intensification of smallholder crop-livestock systems in Vihiga district, Kenya," Agricultural Systems, Elsevier, vol. 101(1-2), pages 1-19, June.
    15. Andrew Dorward, 2009. "Integrating Contested Aspirations, Processes and Policy: Development as Hanging In, Stepping Up and Stepping Out," Development Policy Review, Overseas Development Institute, vol. 27(2), pages 131-146, March.
    16. de Ridder, Nico & Breman, Henk & van Keulen, Herman & Stomph, Tjeerd Jan, 2004. "Revisiting a `cure against land hunger': soil fertility management and farming systems dynamics in the West African Sahel," Agricultural Systems, Elsevier, vol. 80(2), pages 109-131, May.
    17. Samuel Adjei-Nsiah & Cees Leeuwis & Ken Giller & Thom Kuyper, 2008. "Action research on alternative land tenure arrangements in Wenchi, Ghana: learning from ambiguous social dynamics and self-organized institutional innovation," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 25(3), pages 389-403, September.
    18. Misiko, M. & Tittonell, P. & Ramisch, J.J. & Richards, P. & Giller, K.E., 2008. "Integrating new soybean varieties for soil fertility management in smallholder systems through participatory research: Lessons from western Kenya," Agricultural Systems, Elsevier, vol. 97(1-2), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:104:y:2011:i:2:p:191-203. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/agsy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.