IDEAS home Printed from https://ideas.repec.org/a/spr/snbeco/v5y2025i10d10.1007_s43546-025-00913-9.html
   My bibliography  Save this article

Are millets resistant to climate shocks? Fresh insights from India

Author

Listed:
  • Raju Guntukula

    (NALSAR University of Law)

  • Pandaraiah Gouraram

    (Mahatma Gandhi University)

  • Sowmya Yerraboina

    (Mahindra University)

Abstract

Millets are crucial to the nutritional security and livelihoods of millions in India, making it essential to understand how changing climatic patterns influence their yields to inform sustainable agricultural strategies. Against this background, this study aims to empirically examine the sensitivity of millet yields to climate change in India. Using 53 years of annual time-series data (1970–2022), this study analyzes the short-run and long-run effects of climatic and non-climatic factors on millet yields by employing the Autoregressive Distributed Lag (ARDL) approach. The results of the bounds test confirmed the existence of a long-run cointegrating relationship between the millets yield and explanatory variables. Maximum temperature has a significant adverse impact on millets’ yield whereas minimum temperature, rainfall and CO2 emissions have a substantial positive effect in long-run. The adverse impact of rising temperatures on millet yields is likely to have severe long-term consequences for food and nutritional security. Policymakers should focus on climate-resilient strategies like developing heat-tolerant millet varieties and improving irrigation systems to help farmers cope with rising temperatures.

Suggested Citation

  • Raju Guntukula & Pandaraiah Gouraram & Sowmya Yerraboina, 2025. "Are millets resistant to climate shocks? Fresh insights from India," SN Business & Economics, Springer, vol. 5(10), pages 1-26, October.
  • Handle: RePEc:spr:snbeco:v:5:y:2025:i:10:d:10.1007_s43546-025-00913-9
    DOI: 10.1007/s43546-025-00913-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43546-025-00913-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43546-025-00913-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Anubhab Pattanayak & K. S. Kavi Kumar, 2014. "Weather Sensitivity Of Rice Yield: Evidence From India," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-24.
    2. Robert Engle & Clive Granger, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    3. Pesaran, M.H. & Shin, Y., 1995. "An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis," Cambridge Working Papers in Economics 9514, Faculty of Economics, University of Cambridge.
    4. Barnwal, Prabhat & Kotani, Koji, 2013. "Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India," Ecological Economics, Elsevier, vol. 87(C), pages 95-109.
    5. Shreekant Gupta & Partha Sen & Suchita Srinivasan, 2014. "Impact Of Climate Change On The Indian Economy: Evidence From Food Grain Yields," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-29.
    6. Mansoor Ahmed & Jing shuai & Hussain Ali, 2024. "The effects of climate change on food production in India: evidence from the ARDL model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 14601-14619, June.
    7. Raju Guntukula & Phanindra Goyari, 2020. "Climate Change Effects on the Crop Yield and Its Variability in Telangana, India," Studies in Microeconomics, , vol. 8(1), pages 119-148, June.
    8. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    9. Amusa, Hammed & Amusa, Kafayat & Mabugu, Ramos, 2009. "Aggregate demand for electricity in South Africa: An analysis using the bounds testing approach to cointegration," Energy Policy, Elsevier, vol. 37(10), pages 4167-4175, October.
    10. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    11. Wing, Ian Sue & De Cian, Enrica & Mistry, Malcolm N., 2021. "Global vulnerability of crop yields to climate change," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    12. Narayan, Paresh Kumar & Smyth, Russell, 2005. "Electricity consumption, employment and real income in Australia evidence from multivariate Granger causality tests," Energy Policy, Elsevier, vol. 33(9), pages 1109-1116, June.
    13. Wolde-Rufael, Yemane, 2010. "Bounds test approach to cointegration and causality between nuclear energy consumption and economic growth in India," Energy Policy, Elsevier, vol. 38(1), pages 52-58, January.
    14. Birthal, P.S. & Khan, T.M. & Negi, D.S. & Agarwal, S., 2014. "Impact of Climate Change on Yields of Major Food Crops in India: Implications for Food Security," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 27(2).
    15. Murat Isik & Stephen Devadoss, 2006. "An analysis of the impact of climate change on crop yields and yield variability," Applied Economics, Taylor & Francis Journals, vol. 38(7), pages 835-844.
    16. Souryabrata Mohapatra & Kirtti Ranjan Paltasingh & Dayakar Peddi & Dukhabandhu Sahoo & Auro Kumar Sahoo & Pritisudha Mohanty, 2025. "Evaluating Seasonal Weather Risks on Cereal Yield Distributions in Southern India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 23(3), pages 785-845, September.
    17. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    18. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    19. Md. Abdur Rashid Sarker & Khorshed Alam & Jeff Gow, 2014. "Assessing the effects of climate change on rice yields: An econometric investigation using Bangladeshi panel data," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 405-416.
    20. V. Saravanakumar, 2015. "Impact of Climate Change on Yield of Major Food Crops in Tamil Nadu, India," Working Papers id:7555, eSocialSciences.
    21. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    22. Chandio, Abbas Ali & Jiang, Yuansheng & Ahmad, Fayyaz & Adhikari, Salina & Ain, Qurat Ul, 2021. "Assessing the impacts of climatic and technological factors on rice production: Empirical evidence from Nepal," Technology in Society, Elsevier, vol. 66(C).
    23. Bekhet, Hussain Ali & Othman, Nor Salwati, 2018. "The role of renewable energy to validate dynamic interaction between CO2 emissions and GDP toward sustainable development in Malaysia," Energy Economics, Elsevier, vol. 72(C), pages 47-61.
    24. Jinxia Wang & Robert Mendelsohn & Ariel Dinar & Jikun Huang & Scott Rozelle & Lijuan Zhang, 2009. "The impact of climate change on China's agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 323-337, May.
    25. Zhang, Dongsheng & Li, Ali & Lam, Shu Kee & Li, Ping & Zong, Yuzheng & Gao, Zhiqiang & Hao, Xingyu, 2021. "Increased carbon uptake under elevated CO2 concentration enhances water-use efficiency of C4 broomcorn millet under drought," Agricultural Water Management, Elsevier, vol. 245(C).
    26. Nath, Hiranya K. & Mandal, Raju, . "Heterogeneous Climatic Impacts on Agricultural Production: Evidence from Rice Yield in Assam, India," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 15(01).
    27. Inder Sekhar Yadav & Phanindra Goyari, 2024. "The effects of financial development on crop productivity: ARDL evidence from Indian agriculture," Journal of Financial Economic Policy, Emerald Group Publishing Limited, vol. 17(4), pages 530-558, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raju Guntukula & Phanindra Goyari, 2020. "Climate Change Effects on the Crop Yield and Its Variability in Telangana, India," Studies in Microeconomics, , vol. 8(1), pages 119-148, June.
    2. Mohapatra, Souryabrata & Wen, Le & Sharp, Basil & Sahoo, Dukhabandhu, 2024. "Unveiling the spatial dynamics of climate impact on rice yield in India," Economic Analysis and Policy, Elsevier, vol. 83(C), pages 922-945.
    3. Bashiri Behmiri, Niaz & Pires Manso, José R., 2012. "Does Portuguese economy support crude oil conservation hypothesis?," Energy Policy, Elsevier, vol. 45(C), pages 628-634.
    4. Sulaiman, Saidu & Masih, Mansur, 2017. "Is liberalizing finance the game in town for Nigeria ?," MPRA Paper 95569, University Library of Munich, Germany.
    5. Adnan Haider & Asad Jan & Kalim Hyder, 2013. "On the (Ir)Relevance of Monetary Aggregate Targeting in Pakistan: An Eclectic View," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 18(2), pages 65-119, July-Dec.
    6. Ahmed, Monir Uddin & Nurul Hossain, A.K.M. & Hasanuzzaman, Syed, 2015. "Exploring the depth of energy penetration in economic advancement: Perspective of Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1033-1047.
    7. Mohammad Azhar Ud Din & Shaukat Haseen, 2024. "Impact of climate change on Indian agriculture: new evidence from the autoregressive distributed lag approach," Asia-Pacific Journal of Regional Science, Springer, vol. 8(2), pages 377-394, June.
    8. Hande Aksöz Yılmaz, 2020. "The Impact of Foreign Trade on Immigration from Turkey to Germany: ARDL Bounds Test Approach," Journal of Economy Culture and Society, Istanbul University, Faculty of Economics, vol. 62(62), pages 123-143, December.
    9. Sushil Kumar Haldar, 2009. "Economic Growth in India Revisited," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 10(1), pages 105-126, January.
    10. Ozturk, Ilhan & Acaravci, Ali, 2010. "The causal relationship between energy consumption and GDP in Albania, Bulgaria, Hungary and Romania: Evidence from ARDL bound testing approach," Applied Energy, Elsevier, vol. 87(6), pages 1938-1943, June.
    11. Levent KORAP, 2008. "Exchange Rate Determination Of Tl/Us$:A Co-Integration Approach," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 7(1), pages 24-50, May.
    12. Pedro Hugo Clavijo Cortes, 2017. "Balance comercial y volatilidad del tipo de cambio nominal: Un estudio de series de tiempo para Colombia," Revista Economía y Región, Universidad Tecnológica de Bolívar, vol. 11(1), pages 37-58.
    13. Fakhri J. Hasanov & Muhammad Javid & Frederick L. Joutz, 2022. "Saudi Non-Oil Exports before and after COVID-19: Historical Impacts of Determinants and Scenario Analysis," Sustainability, MDPI, vol. 14(4), pages 1-38, February.
    14. Barnett, William A. & Ghosh, Taniya & Adil, Masudul Hasan, 2022. "Is money demand really unstable? Evidence from Divisia monetary aggregates," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 606-622.
    15. Koçak Emrah & Uzay Nısfet, 2019. "The effect of financial development on income inequality in Turkey: An estimate of the Greenwood-Jovanovic hypothesis," Review of Economic Perspectives, Sciendo, vol. 19(4), pages 319-344, December.
    16. Halil Alt ntas & Melike Kum, 2013. "Multivariate Granger Causality between Electricity Generation, Exports, Prices and Economic Growth in Turkey," International Journal of Energy Economics and Policy, Econjournals, vol. 3(Special), pages 41-51.
    17. Sari, Ramazan & Ewing, Bradley T. & Soytas, Ugur, 2008. "The relationship between disaggregate energy consumption and industrial production in the United States: An ARDL approach," Energy Economics, Elsevier, vol. 30(5), pages 2302-2313, September.
    18. Man-Keun Kim & Kangil Lee, 2015. "Dynamic Interactions between Carbon and Energy Prices in the U.S. Regional Greenhouse Gas Initiative," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 494-501.
    19. Constantinos Alexiou & Persefoni Tsaliki & Lefteris Tsoulfidis, 2008. "The Greek Hyperinflation Revisited," Ekonomia, Cyprus Economic Society and University of Cyprus, vol. 11(1), pages 19-34, Summer.
    20. Olena STRYZHAK & Ramazan SAYAR & Yılmaz Onur ARI, 2022. "Geopolitical risks, GDP and tourism: an ARDL-ECM cointegration study on Ukraine," CES Working Papers, Centre for European Studies, Alexandru Ioan Cuza University, vol. 14(1), pages 85-113, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snbeco:v:5:y:2025:i:10:d:10.1007_s43546-025-00913-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.