IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v51y2016i1d10.1007_s00181-015-1012-1.html
   My bibliography  Save this article

Estimating the evolution of elasticities of natural gas demand: the case of Istanbul, Turkey*

* This paper has been replicated

Author

Listed:
  • Galip Altinay

    (Bandirma Onyedi Eylul University)

  • A. Talha Yalta

    (TOBB University of Economics and Technology)

Abstract

Much of the existing literature on demand for natural gas assumes constant and single-value elasticities, overlooking the possibility of dynamic responses to the changing conditions. We aim to fill this gap by providing individual time series of short-run elasticity estimates based on maximum entropy resampling in a fixed-width rolling window framework. This approach does not only enable taking the variability of the elasticities into account, but also helps obtain more efficient and robust results in small samples in comparison with conventional inferences based on asymptotic distribution theory. To illustrate the methodology, we employ monthly time-series data between 2004 and 2012 and analyze the dynamics of residential natural gas demand in Istanbul, the largest metropolitan area in Turkey. Our findings reveal that the elasticities of the demand model do not remain constant and they are sensitive to the economic situation as well as weather fluctuations.

Suggested Citation

  • Galip Altinay & A. Talha Yalta, 2016. "Estimating the evolution of elasticities of natural gas demand: the case of Istanbul, Turkey," Empirical Economics, Springer, vol. 51(1), pages 201-220, August.
  • Handle: RePEc:spr:empeco:v:51:y:2016:i:1:d:10.1007_s00181-015-1012-1
    DOI: 10.1007/s00181-015-1012-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-015-1012-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Dimitropoulos & Lester Hunt & Guy Judge, 2005. "Estimating underlying energy demand trends using UK annual data," Applied Economics Letters, Taylor & Francis Journals, vol. 12(4), pages 239-244.
    2. Hassan Ghassan & Prashanta Banerjee, 2015. "A threshold cointegration analysis of asymmetric adjustment of OPEC and non-OPEC monthly crude oil prices," Empirical Economics, Springer, vol. 49(1), pages 305-323, August.
    3. Philip Kofi Adom, 2013. "Time-varying analysis of aggregate electricity demand in Ghana: a rolling analysis," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 37(1), pages 63-80, March.
    4. Amarawickrama, Himanshu A. & Hunt, Lester C., 2008. "Electricity demand for Sri Lanka: A time series analysis," Energy, Elsevier, vol. 33(5), pages 724-739.
    5. Mohammed A. Al-Sahlawi, 1989. "The Demand for Natural Gas: A Survey of Price and Income Elasticities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 77-90.
    6. Adeyemi, Olutomi I. & Broadstock, David C. & Chitnis, Mona & Hunt, Lester C. & Judge, Guy, 2010. "Asymmetric price responses and the underlying energy demand trend: Are they substitutes or complements? Evidence from modelling OECD aggregate energy demand," Energy Economics, Elsevier, vol. 32(5), pages 1157-1164, September.
    7. Karimu, Amin & Brännlund, Runar, 2013. "Functional form and aggregate energy demand elasticities: A nonparametric panel approach for 17 OECD countries," Energy Economics, Elsevier, vol. 36(C), pages 19-27.
    8. Christiane Baumeister & Gert Peersman, 2013. "The Role Of Time‐Varying Price Elasticities In Accounting For Volatility Changes In The Crude Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1087-1109, November.
    9. Inglesi-Lotz, R., 2011. "The evolution of price elasticity of electricity demand in South Africa: A Kalman filter application," Energy Policy, Elsevier, vol. 39(6), pages 3690-3696, June.
    10. Yalta, A. Talha, 2011. "Analyzing energy consumption and GDP nexus using maximum entropy bootstrap: The case of Turkey," Energy Economics, Elsevier, vol. 33(3), pages 453-460, May.
    11. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Arslanturk, Yalcin, 2010. "Economic growth and energy consumption causal nexus viewed through a bootstrap rolling window," Energy Economics, Elsevier, vol. 32(6), pages 1398-1410, November.
    12. Kim, Jae H. & Fraser, Iain & Hyndman, Rob J., 2011. "Improved interval estimation of long run response from a dynamic linear model: A highest density region approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2477-2489, August.
    13. Michael Polemis, 2012. "Competition and price asymmetries in the Greek oil sector: an empirical analysis on gasoline market," Empirical Economics, Springer, vol. 43(2), pages 789-817, October.
    14. Paul Brenton, 1997. "Estimates of the demand for energy using cross-country consumption data," Applied Economics, Taylor & Francis Journals, vol. 29(7), pages 851-859.
    15. Vinod, Hrishikesh D., 2006. "Maximum entropy ensembles for time series inference in economics," Journal of Asian Economics, Elsevier, vol. 17(6), pages 955-978, December.
    16. Wadud, Zia & Dey, Himadri S. & Kabir, Md. Ashfanoor & Khan, Shahidul I., 2011. "Modeling and forecasting natural gas demand in Bangladesh," Energy Policy, Elsevier, vol. 39(11), pages 7372-7380.
    17. Berkhout, Peter H. G. & Ferrer-i-Carbonell, Ada & Muskens, Jos C., 2004. "The ex post impact of an energy tax on household energy demand," Energy Economics, Elsevier, vol. 26(3), pages 297-317, May.
    18. A. Talha Yalta, 2013. "Small Sample Bootstrap Inference of Level Relationships in the Presence of Autocorrelated Errors: A Large Scale Simulation Study and an Application in Energy Demand," Working Papers 1301, TOBB University of Economics and Technology, Department of Economics.
    19. Erdogdu, Erkan, 2010. "Natural gas demand in Turkey," Applied Energy, Elsevier, vol. 87(1), pages 211-219, January.
    20. Dagher, Leila, 2012. "Natural gas demand at the utility level: An application of dynamic elasticities," Energy Economics, Elsevier, vol. 34(4), pages 961-969.
    21. Dargay, Joyce M. & Gately, Dermot, 2010. "World oil demand's shift toward faster growing and less price-responsive products and regions," Energy Policy, Elsevier, vol. 38(10), pages 6261-6277, October.
    22. Talha Yalta, A. & Cakar, Hatice, 2012. "Energy consumption and economic growth in China: A reconciliation," Energy Policy, Elsevier, vol. 41(C), pages 666-675.
    23. Vinod, Hrishikesh D. & Lopez-de-Lacalle, Javier, 2009. "Maximum Entropy Bootstrap for Time Series: The meboot R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i05).
    24. Dermot Gately & Hiliard G. Huntington, 2002. "The Asymmetric Effects of Changes in Price and Income on Energy and Oil Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 19-55.
    25. Vinod, H. D., 2004. "Ranking mutual funds using unconventional utility theory and stochastic dominance," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 353-377, June.
    26. Bernstein, Ronald & Madlener, Reinhard, 2011. "Residential Natural Gas Demand Elasticities in OECD Countries: An ARDL Bounds Testing Approach," FCN Working Papers 15/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    27. Arisoy, Ibrahim & Ozturk, Ilhan, 2014. "Estimating industrial and residential electricity demand in Turkey: A time varying parameter approach," Energy, Elsevier, vol. 66(C), pages 959-964.
    28. Frank Asche & Odd Bjarte Nilsen & Ragnar Tveteras, 2008. "Natural Gas Demand in the European Household Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 27-46.
    29. Lester C. Hunt & Yasushi Ninomiya, 2003. "Unravelling Trends and Seasonality: A Structural Time Series Analysis of Transport Oil Demand in the UK and Japan," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 63-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halim Tatli, 2018. "Multiple Determinants of Household Natural Gas Demand: A Panel Data Analysis in OECD Countries," Asian Development Policy Review, Asian Economic and Social Society, vol. 6(4), pages 243-253, December.
    2. Alptekin, Aynur & Broadstock, David C. & Chen, Xiaoqi & Wang, Dong, 2019. "Time-varying parameter energy demand functions: Benchmarking state-space methods against rolling-regressions," Energy Economics, Elsevier, vol. 82(C), pages 26-41.
    3. Bakhat, Mohcine & Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "Elasticities of transport fuels at times of economic crisis: An empirical analysis for Spain," Energy Economics, Elsevier, vol. 68(S1), pages 66-80.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Talha Yalta, 2013. "The Dynamics of Road Energy Demand and Illegal Fuel Activity in Turkey: A Rolling Window Analysis," Working Papers 1304, TOBB University of Economics and Technology, Department of Economics, revised Jul 2013.
    2. A. Talha Yalta, 2016. "Bootstrap Inference of Level Relationships in the Presence of Serially Correlated Errors: A Large Scale Simulation Study and an Application in Energy Demand," Computational Economics, Springer;Society for Computational Economics, vol. 48(2), pages 339-366, August.
    3. A. Talha Yalta, 2013. "Small Sample Bootstrap Inference of Level Relationships in the Presence of Autocorrelated Errors: A Large Scale Simulation Study and an Application in Energy Demand," Working Papers 1301, TOBB University of Economics and Technology, Department of Economics.
    4. Yalta, A. Talha & Yalta, A. Yasemin, 2016. "The dynamics of fuel demand and illegal fuel activity in Turkey," Energy Economics, Elsevier, vol. 54(C), pages 144-158.
    5. Alptekin, Aynur & Broadstock, David C. & Chen, Xiaoqi & Wang, Dong, 2019. "Time-varying parameter energy demand functions: Benchmarking state-space methods against rolling-regressions," Energy Economics, Elsevier, vol. 82(C), pages 26-41.
    6. Salisu, Afees A. & Ayinde, Taofeek O., 2016. "Modeling energy demand: Some emerging issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1470-1480.
    7. Burke, Paul J. & Yang, Hewen, 2016. "The price and income elasticities of natural gas demand: International evidence," Energy Economics, Elsevier, vol. 59(C), pages 466-474.
    8. Malzi, Mohamed Jaouad & Sohag, Kazi & Vasbieva, Dinara G. & Ettahir, Aziz, 2020. "Environmental policy effectiveness on residential natural gas use in OECD countries," Resources Policy, Elsevier, vol. 66(C).
    9. Adeyemi, Olutomi I. & Hunt, Lester C., 2014. "Accounting for asymmetric price responses and underlying energy demand trends in OECD industrial energy demand," Energy Economics, Elsevier, vol. 45(C), pages 435-444.
    10. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    11. Ishmael Ackah, 2014. "Determinants of natural gas demand in Ghana," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 38(3), pages 272-295, September.
    12. Fedoseeva, Svetlana & Zeidan, Rodrigo, 2018. "How (a)symmetric is the response of import demand to changes in its determinants? Evidence from European energy imports," Energy Economics, Elsevier, vol. 69(C), pages 379-394.
    13. Jeyhun I. Mikayilov & Fakhri J. Hasanov & Carlo A. Bollino & Ceyhun Mahmudlu, 2017. "Modeling of Electricity Demand for Azerbaijan: Time-Varying Coefficient Cointegration Approach," Energies, MDPI, Open Access Journal, vol. 10(11), pages 1-12, November.
    14. Talha Yalta, A. & Cakar, Hatice, 2012. "Energy consumption and economic growth in China: A reconciliation," Energy Policy, Elsevier, vol. 41(C), pages 666-675.
    15. Alam, Mohammad Jahangir & Ahmed, Mumtaz & Begum, Ismat Ara, 2017. "Nexus between non-renewable energy demand and economic growth in Bangladesh: Application of Maximum Entropy Bootstrap approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 399-406.
    16. Yalta, A. Yasemin, 2013. "Revisiting the FDI-led growth Hypothesis: The case of China," Economic Modelling, Elsevier, vol. 31(C), pages 335-343.
    17. Olaniyan, Monisola J. & Evans, Joanne, 2014. "The importance of engaging residential energy customers' hearts and minds," Energy Policy, Elsevier, vol. 69(C), pages 273-284.
    18. Rodrigues, Niágara & Losekann, Luciano & Silveira Filho, Getulio, 2018. "Demand of automotive fuels in Brazil: Underlying energy demand trend and asymmetric price response," Energy Economics, Elsevier, vol. 74(C), pages 644-655.
    19. Copiello, Sergio & Grillenzoni, Carlo, 2017. "Is the cold the only reason why we heat our homes? Empirical evidence from spatial series data," Applied Energy, Elsevier, vol. 193(C), pages 491-506.
    20. Ackah, Ishmael, 2015. "Accounting for the effect of exogenous non-Economic variables on natural gas demand in oil producing African countries," MPRA Paper 81553, University Library of Munich, Germany.

    Replication

    This item has been replicated by:
  • Alptekin, Aynur & Broadstock, David C. & Chen, Xiaoqi & Wang, Dong, 2019. "Time-varying parameter energy demand functions: Benchmarking state-space methods against rolling-regressions," Energy Economics, Elsevier, vol. 82(C), pages 26-41.
  • More about this item

    Keywords

    Natural gas; Energy demand; Maximum entropy; Bootstrap; Istanbul; Turkey;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:51:y:2016:i:1:d:10.1007_s00181-015-1012-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.