IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i6p3690-3696.html
   My bibliography  Save this article

The evolution of price elasticity of electricity demand in South Africa: A Kalman filter application

Author

Listed:
  • Inglesi-Lotz, R.

Abstract

In South Africa, the electricity mismatch of supply and demand has been of major concern. Additional to past problems, the 2008 electricity crisis made the solution crucial after its damaging consequences to the economy. The disagreement on the need and consequences of the continuous electricity price hikes worsens the situation. To contribute to the recent electricity debate, this paper proposes a time-varying price elasticity of demand for electricity; the sensitivity of electricity consumption to price fluctuations changes throughout the years. The main purpose of this study is the estimation of the price elasticity of electricity in South Africa during the period 1980-2005 by employing an advanced econometric technique, the Kalman filter. Apart from the decreasing effect of electricity prices to consumption (-71.8% in the 1990s and -94.5% in the 2000s in average), our results conclude to an important finding: the higher the prices (for example in the 1980s) the higher the sensitivity of consumers to price fluctuations. Thus, further increases of the electricity prices may lead to changes in the behaviour of electricity consumers, focusing their efforts on improving their efficiency levels by introducing demand-side management techniques or even turning to other sources of - cheaper - energy.

Suggested Citation

  • Inglesi-Lotz, R., 2011. "The evolution of price elasticity of electricity demand in South Africa: A Kalman filter application," Energy Policy, Elsevier, vol. 39(6), pages 3690-3696, June.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3690-3696
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511002758
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunt, Lester C. & Judge, Guy & Ninomiya, Yasushi, 2003. "Underlying trends and seasonality in UK energy demand: a sectoral analysis," Energy Economics, Elsevier, vol. 25(1), pages 93-118, January.
    2. De Vita, G. & Endresen, K. & Hunt, L.C., 2006. "An empirical analysis of energy demand in Namibia," Energy Policy, Elsevier, vol. 34(18), pages 3447-3463, December.
    3. Amarawickrama, Himanshu A. & Hunt, Lester C., 2008. "Electricity demand for Sri Lanka: A time series analysis," Energy, Elsevier, vol. 33(5), pages 724-739.
    4. von Hirschhausen, Christian & Andres, Michael, 2000. "Long-term electricity demand in China -- From quantitative to qualitative growth?," Energy Policy, Elsevier, vol. 28(4), pages 231-241, April.
    5. Cuthbertson, Keith, 1988. "Expectations, Learning and the Kalman Filter," The Manchester School of Economic & Social Studies, University of Manchester, vol. 56(3), pages 223-246, September.
    6. G. W. Morrison & D. H. Pike, 1977. "Kalman Filtering Applied to Statistical Forecasting," Management Science, INFORMS, vol. 23(7), pages 768-774, March.
    7. Dilaver, Zafer & Hunt, Lester C., 2011. "Industrial electricity demand for Turkey: A structural time series analysis," Energy Economics, Elsevier, vol. 33(3), pages 426-436, May.
    8. Hansen, Bruce E, 2002. "Tests for Parameter Instability in Regressions with I(1) Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 45-59, January.
    9. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    10. Nakajima, Tadahiro & Hamori, Shigeyuki, 2010. "Change in consumer sensitivity to electricity prices in response to retail deregulation: A panel empirical analysis of the residential demand for electricity in the United States," Energy Policy, Elsevier, vol. 38(5), pages 2470-2476, May.
    11. T. Lawson, 1980. "Adaptive Expectations and Uncertainty," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(2), pages 305-320.
    12. Kamerschen, David R. & Porter, David V., 2004. "The demand for residential, industrial and total electricity, 1973-1998," Energy Economics, Elsevier, vol. 26(1), pages 87-100, January.
    13. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    14. Al-Faris, Abdul Razak F., 2002. "The demand for electricity in the GCC countries," Energy Policy, Elsevier, vol. 30(2), pages 117-124, January.
    15. Atakhanova, Zauresh & Howie, Peter, 2007. "Electricity demand in Kazakhstan," Energy Policy, Elsevier, vol. 35(7), pages 3729-3743, July.
    16. Amusa, Hammed & Amusa, Kafayat & Mabugu, Ramos, 2009. "Aggregate demand for electricity in South Africa: An analysis using the bounds testing approach to cointegration," Energy Policy, Elsevier, vol. 37(10), pages 4167-4175, October.
    17. Inglesi, Roula, 2010. "Aggregate electricity demand in South Africa: Conditional forecasts to 2030," Applied Energy, Elsevier, vol. 87(1), pages 197-204, January.
    18. Kate Bayliss, 2008. "Lessons from the South African Electricity Crisis," One Pager 56, International Policy Centre for Inclusive Growth.
    19. David F. Hendry & Katarina Juselius, 2001. "Explaining Cointegration Analysis: Part II," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 75-120.
    20. Harvey, Andrew, 1997. "Trends, Cycles and Autoregressions," Economic Journal, Royal Economic Society, vol. 107(440), pages 192-201, January.
    21. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    22. Lester D. Taylor, 1975. "The Demand for Electricity: A Survey," Bell Journal of Economics, The RAND Corporation, vol. 6(1), pages 74-110, Spring.
    23. Slade, Margaret E., 1989. "Modelling stochastic and cyclical components of technical change : An application of the Kalman filter," Journal of Econometrics, Elsevier, vol. 41(3), pages 363-383, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roula Inglesi-Lotz, 2012. "The sensitivity of the South African industrial sector’s electricity consumption to electricity price fluctuations," Working Papers 201225, University of Pretoria, Department of Economics.
    2. Masike, Kabelo & Vermeulen, Cobus, 2022. "The time-varying elasticity of South African electricity demand," Energy, Elsevier, vol. 238(PC).
    3. Tiwari, Aviral Kumar & Menegaki, Angeliki N., 2019. "A time varying approach on the price elasticity of electricity in India during 1975–2013," Energy, Elsevier, vol. 183(C), pages 385-397.
    4. Adom, Philip Kofi & Bekoe, William, 2013. "Modelling electricity demand in Ghana revisited: The role of policy regime changes," Energy Policy, Elsevier, vol. 61(C), pages 42-50.
    5. Arisoy, Ibrahim & Ozturk, Ilhan, 2014. "Estimating industrial and residential electricity demand in Turkey: A time varying parameter approach," Energy, Elsevier, vol. 66(C), pages 959-964.
    6. Pourazarm, Elham & Cooray, Arusha, 2013. "Estimating and forecasting residential electricity demand in Iran," Economic Modelling, Elsevier, vol. 35(C), pages 546-558.
    7. Campbell, Alrick, 2018. "Price and income elasticities of electricity demand: Evidence from Jamaica," Energy Economics, Elsevier, vol. 69(C), pages 19-32.
    8. Inglesi, Roula, 2010. "Aggregate electricity demand in South Africa: Conditional forecasts to 2030," Applied Energy, Elsevier, vol. 87(1), pages 197-204, January.
    9. Ishmael Ackah, 2014. "Determinants of natural gas demand in Ghana," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 38(3), pages 272-295, September.
    10. Halim Tatli, 2019. "Factors affecting industrial coal demand in Turkey," Energy & Environment, , vol. 30(6), pages 1027-1048, September.
    11. Daniel Morais de Souza & Rogerio Silva de Mattos & Alexandre Zanini, 2022. "Estimating Elasticities for the Residential Demand of Electricity in Brazil Using Cointegration Models," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 315-324, March.
    12. Khan, Muhammad Arshad & Abbas, Faisal, 2016. "The dynamics of electricity demand in Pakistan: A panel cointegration analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1159-1178.
    13. Fakhri J. Hasanov & Lester C. Hunt & Ceyhun I. Mikayilov, 2016. "Modeling and Forecasting Electricity Demand in Azerbaijan Using Cointegration Techniques," Energies, MDPI, vol. 9(12), pages 1-31, December.
    14. Adewuyi, Adeolu O., 2016. "Determinants of import demand for non-renewable energy (petroleum) products: Empirical evidence from Nigeria," Energy Policy, Elsevier, vol. 95(C), pages 73-93.
    15. David De La Croix & Jean-Pierre Urbain, 1998. "Intertemporal substitution in import demand and habit formation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(6), pages 589-612.
    16. Tarlok Singh, 2017. "Are Current Account Deficits in the OECD Countries Sustainable? Robust Evidence from Time-Series Estimators," The International Trade Journal, Taylor & Francis Journals, vol. 31(1), pages 29-64, January.
    17. Kohler, Marcel, 2014. "Differential electricity pricing and energy efficiency in South Africa," Energy, Elsevier, vol. 64(C), pages 524-532.
    18. Tehreem Fatima & Enjun Xia & Muhammad Ahad, 2019. "Oil demand forecasting for China: a fresh evidence from structural time series analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1205-1224, June.
    19. Olusegun A. Omisakin & Abimbola M. Oyinlola & Oluwatosin A. Adeniyi, 2012. "Modeling Gasoline Demand with Structural Breaks:New Evidence from Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 2(1), pages 1-9.
    20. Aldubyan, Mohammad & Gasim, Anwar, 2021. "Energy price reform in Saudi Arabia: Modeling the economic and environmental impacts and understanding the demand response," Energy Policy, Elsevier, vol. 148(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3690-3696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.