IDEAS home Printed from https://ideas.repec.org/a/rre/publsh/v43y2013i23p131-154.html
   My bibliography  Save this article

Computational Issues in the Estimation of the Spatial Probit Model: A Comparison of Various Estimators

Author

Listed:
  • Anna Gloria Billé

    (G. D’Annunzio University)

Abstract

In spatial discrete choice models the spatial dependent structure adds complexity in the estimation of parameters. Appropriate general method of moments (GMM) estimation needs inverses of n-by-n matrices and an optimization complexity of the moment conditions for moderate to large samples makes practical applications more difficult. Recently, Klier and McMillen (2008) have proposed a linearized version of the GMM estimator that avoids the infeasible problem of inverting n-by-n matrices when employing large samples. They show that standard GMM reduces to a nonlinear two-stage least squares problem. On the other hand, when we deal with full maximum likelihood (FML) estimation, a multidimensional integration problem arises and a viable computational solution needs to be found. Although it remains somewhat computationally burdensome, since the inverses of matrices dimensioned by the number of observations have to be computed, the ML estimator yields the potential advantage of efficiency. Therefore, through Monte Carlo experiments we compare GMM-based approaches with ML estimation in terms of their computation times and statistical properties. Furthermore, a comparison in terms of the marginal effects also is included. Finally, we recommend an algorithm based on sparse matrices that enables more efficient use of both ML and GMM estimators.

Suggested Citation

  • Anna Gloria Billé, 2013. "Computational Issues in the Estimation of the Spatial Probit Model: A Comparison of Various Estimators," The Review of Regional Studies, Southern Regional Science Association, vol. 43(2,3), pages 131-154, Winter.
  • Handle: RePEc:rre:publsh:v:43:y:2013:i:23:p:131-154
    as

    Download full text from publisher

    File URL: http://journal.srsa.org/ojs/index.php/RRS/article/view/43.23.3/pdf
    File Function: To View On Journal Page
    Download Restriction: no

    File URL: http://journal.srsa.org/ojs/index.php/RRS/article/download/43.23.3/pdf
    File Function: To Download Article
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Pinkse, Joris & Slade, Margaret E., 1998. "Contracting in space: An application of spatial statistics to discrete-choice models," Journal of Econometrics, Elsevier, vol. 85(1), pages 125-154, July.
    3. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    4. Kathleen P. Bell & Timothy J. Dalton, 2007. "Spatial Economic Analysis in Data‐Rich Environments," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(3), pages 487-501, September.
    5. Kathleen P. Bell & Nancy E. Bockstael, 2000. "Applying the Generalized-Moments Estimation Approach to Spatial Problems Involving Microlevel Data," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 72-82, February.
    6. Roger Bivand, 2008. "Implementing Representations Of Space In Economic Geography," Journal of Regional Science, Wiley Blackwell, vol. 48(1), pages 1-27, February.
    7. Wang, Honglin & Iglesias, Emma M. & Wooldridge, Jeffrey M., 2013. "Partial maximum likelihood estimation of spatial probit models," Journal of Econometrics, Elsevier, vol. 172(1), pages 77-89.
    8. A S Fotheringham & M E Charlton & C Brunsdon, 1998. "Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis," Environment and Planning A, , vol. 30(11), pages 1905-1927, November.
    9. Bera, Anil K & Jarque, Carlos M & Lee, Lung-Fei, 1984. "Testing the Normality Assumption in Limited Dependent Variable Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(3), pages 563-578, October.
    10. Brock, William A. & Durlauf, Steven N., 2007. "Identification of binary choice models with social interactions," Journal of Econometrics, Elsevier, vol. 140(1), pages 52-75, September.
    11. Smirnov, Oleg A., 2010. "Modeling spatial discrete choice," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 292-298, September.
    12. Robinson, Peter, 2008. "Developments in the analysis of spatial data," LSE Research Online Documents on Economics 25473, London School of Economics and Political Science, LSE Library.
    13. Smirnov, Oleg & Anselin, Luc, 2001. "Fast maximum likelihood estimation of very large spatial autoregressive models: a characteristic polynomial approach," Computational Statistics & Data Analysis, Elsevier, vol. 35(3), pages 301-319, January.
    14. James P. LeSage & R. Kelley Pace & Nina Lam & Richard Campanella & Xingjian Liu, 2011. "New Orleans business recovery in the aftermath of Hurricane Katrina," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(4), pages 1007-1027, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandra Bhat, 2015. "A new spatial (social) interaction discrete choice model accommodating for unobserved effects due to endogenous network formation," Transportation, Springer, vol. 42(5), pages 879-914, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    2. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2018. "Generalized spatial autocorrelation in a panel-probit model with an application to exporting in China," Empirical Economics, Springer, vol. 55(1), pages 193-211, August.
    3. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    4. Silveira Santos, Luís & Proença, Isabel, 2019. "The inversion of the spatial lag operator in binary choice models: Fast computation and a closed formula approximation," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 74-102.
    5. repec:asg:wpaper:1013 is not listed on IDEAS
    6. Carrión-Flores, Carmen E. & Flores-Lagunes, Alfonso & Guci, Ledia, 2018. "An estimator for discrete-choice models with spatial lag dependence using large samples, with an application to land-use conversions," Regional Science and Urban Economics, Elsevier, vol. 69(C), pages 77-93.
    7. Théophile Azomahou, 2008. "Minimum distance estimation of the spatial panel autoregressive model," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 2(1), pages 49-83, April.
    8. Richards, Timothy J. & Acharya, Ram N. & Kagan, Albert, 2008. "Spatial competition and market power in banking," Journal of Economics and Business, Elsevier, vol. 60(5), pages 436-454.
    9. Bhat, Chandra R. & Pinjari, Abdul R. & Dubey, Subodh K. & Hamdi, Amin S., 2016. "On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 240-263.
    10. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    11. Harald Badinger & Peter Egger, 2009. "Estimation of Higher-Order Spatial Autoregressive Panel Data Error Component Models," CESifo Working Paper Series 2556, CESifo.
    12. Badi H. Baltagi & Ying Deng & Xiangjun Ma, 2018. "Network effects on labor contracts of internal migrants in China: a spatial autoregressive model," Empirical Economics, Springer, vol. 55(1), pages 265-296, August.
    13. Martinetti, Davide & Geniaux, Ghislain, 2017. "Approximate likelihood estimation of spatial probit models," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 30-45.
    14. Osman Dogan & Suleyman Taspinar, 2013. "GMM Estimation of Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances," Working Papers 1, City University of New York Graduate Center, Ph.D. Program in Economics.
    15. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    16. Zhenlin Yang & Liangjun Su, 2007. "Instrumental Variable Quantile Estimation of Spatial Autoregressive Models," Working Papers 05-2007, Singapore Management University, School of Economics.
    17. repec:dgr:rugsom:13006-eef is not listed on IDEAS
    18. Baltagi, Badi H. & Egger, Peter H. & Kesina, Michaela, 2017. "Determinants of firm-level domestic sales and exports with spillovers: Evidence from China," Journal of Econometrics, Elsevier, vol. 199(2), pages 184-201.
    19. Anping Chen & Marlon Boarnet & Mark Partridge & Raffaella Calabrese & Johan A. Elkink, 2014. "Estimators Of Binary Spatial Autoregressive Models: A Monte Carlo Study," Journal of Regional Science, Wiley Blackwell, vol. 54(4), pages 664-687, September.
    20. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    21. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    22. Arturs Kalnins, 2003. "Hamburger Prices and Spatial Econometrics," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 12(4), pages 591-616, December.

    More about this item

    Keywords

    econometrics; binary probit model; maximum likelihood; GMM; Monte Carlo simulations;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • R10 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - General
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rre:publsh:v:43:y:2013:i:23:p:131-154. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher Yencha) The email address of this maintainer does not seem to be valid anymore. Please ask Christopher Yencha to update the entry or send us the correct email address. General contact details of provider: http://www.srsa.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.