IDEAS home Printed from https://ideas.repec.org/a/eee/regeco/v76y2019icp74-102.html

The inversion of the spatial lag operator in binary choice models: Fast computation and a closed formula approximation

Author

Listed:
  • Silveira Santos, Luís
  • Proença, Isabel

Abstract

This paper presents a new method to approximate the inverse of the spatial lag operator, used in the estimation of spatial lag models for binary dependent variables. The related matrix operations are approximated as well. Closed formulas for the elements of the approximated matrices are deduced. A GMM estimator is also presented. This estimator is a variant of Klier and McMillen's iterative GMM estimator. The approximated matrices are used in the gradients of the new iterative GMM procedure. Monte Carlo experiments suggest that the proposed approximation is accurate and allows to significantly reduce the computational complexity, and consequently the computational time, associated with the estimation of spatial binary choice models, especially for the case where the spatial weighting matrix is large and dense. Also, the simulation experiments suggest that the proposed iterative GMM estimator performs well in terms of bias and root mean square error and exhibits a minimum trade-off between computational time and unbiasedness within a class of spatial GMM estimators. Finally, the new iterative GMM estimator is applied to the analysis of competitiveness in the U.S. Metropolitan Statistical Areas. A new definition for binary competitiveness is introduced. The estimation of spatial and environmental effects are addressed as central issues.

Suggested Citation

  • Silveira Santos, Luís & Proença, Isabel, 2019. "The inversion of the spatial lag operator in binary choice models: Fast computation and a closed formula approximation," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 74-102.
  • Handle: RePEc:eee:regeco:v:76:y:2019:i:c:p:74-102
    DOI: 10.1016/j.regsciurbeco.2019.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016604621730399X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.regsciurbeco.2019.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isabel Proença & Ludgero Glórias, 2021. "Revisiting the Spatial Autoregressive Exponential Model for Counts and Other Nonnegative Variables, with Application to the Knowledge Production Function," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    2. Piras, Gianfranco & Sarrias, Mauricio, 2023. "One or two-step? Evaluating GMM efficiency for spatial binary probit models," Journal of choice modelling, Elsevier, vol. 48(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:regeco:v:76:y:2019:i:c:p:74-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/regec .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.