IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0314579.html
   My bibliography  Save this article

The dynamic impact of investor climate sentiment on the crude oil futures market: Evidence from the Chinese market

Author

Listed:
  • Wenwen Liu
  • Miaomiao Tang
  • Peng Zhao

Abstract

Climate risk has become a hot topic of global concern. This paper aims to explore the impact of investor climate sentiment (ICS) on China’ s crude oil futures market, covering the period from March 27, 2018, to December 30, 2022. Firstly, this paper employs the Thermal Optimal Path (TOP) method and discovers that the guiding effect of ICS on the volatility of crude oil futures (RVoil) intensifies over time, progressively becoming a pivotal factor in determining volatility. Secondly, based on the lead-lag relationship between ICS and RVoil, this study divides the sample period into five stages and confirms through the HAR model that ICS has a significant inhibitory effect on crude oil volatility during the guiding phase. In addition, incorporating ICS into the HAR model not only improves the model’ s goodness of fit but also significantly reduces the prediction error in out-of-sample forecasts. Finally, by comparing with the full-sample analysis, the volatility prediction results of the segmented samples show that during the guiding phase, the predictive power of ICS for crude oil market volatility is significantly improved. Even in the non-guiding phase, ICS can reduce the prediction error to a certain extent. This result further highlights the advantages of the TOP method in revealing the impact of ICS on the prediction of crude oil volatility.

Suggested Citation

  • Wenwen Liu & Miaomiao Tang & Peng Zhao, 2025. "The dynamic impact of investor climate sentiment on the crude oil futures market: Evidence from the Chinese market," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-29, February.
  • Handle: RePEc:plo:pone00:0314579
    DOI: 10.1371/journal.pone.0314579
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314579
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0314579&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0314579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Ding & Yue Liu & Pierre Failler, 2022. "The Impact of Uncertainties on Crude Oil Prices: Based on a Quantile-on-Quantile Method," Energies, MDPI, vol. 15(10), pages 1-35, May.
    2. Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Energy Economics, Elsevier, vol. 34(1), pages 283-293.
    3. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    4. Eric Strobl, 2011. "The Economic Growth Impact of Hurricanes: Evidence from U.S. Coastal Counties," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 575-589, May.
    5. Donghua Wang & Jingqing Tu & Xiaohui Chang & Saiping Li, 2017. "The lead–lag relationship between the spot and futures markets in China," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1447-1456, September.
    6. Gong, Xue & Lai, Ping & He, Mengxi & Wen, Danyan, 2024. "Climate risk and energy futures high frequency volatility prediction," Energy, Elsevier, vol. 307(C).
    7. repec:dau:papers:123456789/4222 is not listed on IDEAS
    8. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    10. Zhou, Wei-Xing & Sornette, Didier, 2006. "Non-parametric determination of real-time lag structure between two time series: The "optimal thermal causal path" method with applications to economic data," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 195-224, March.
    11. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    12. Li, Xiao & Shen, Dehua & Zhang, Wei, 2018. "Do Chinese internet stock message boards convey firm-specific information?," Pacific-Basin Finance Journal, Elsevier, vol. 49(C), pages 1-14.
    13. Zhang, Ziqi & Su, Zhi & Wang, Ke & Zhang, Yongji, 2022. "Corporate environmental information disclosure and stock price crash risk: Evidence from Chinese listed heavily polluting companies," Energy Economics, Elsevier, vol. 112(C).
    14. I-Hsuan Ethan Chiang & W. Keener Hughen & Jacob S. Sagi, 2015. "Estimating Oil Risk Factors Using Information from Equity and Derivatives Markets," Journal of Finance, American Finance Association, vol. 70(2), pages 769-804, April.
    15. repec:eco:journ2:2017-04-04 is not listed on IDEAS
    16. Alberola, Emilie & Chevallier, Julien & Cheze, Benoi^t, 2008. "Price drivers and structural breaks in European carbon prices 2005-2007," Energy Policy, Elsevier, vol. 36(2), pages 787-797, February.
    17. Juncal Cunado & Soojin Jo & Fernando Perez de Gracia, 2015. "Revisiting the Macroeconomic Impact of Oil Shocks in Asian Economies," Staff Working Papers 15-23, Bank of Canada.
    18. Liu, Yuanyuan & Niu, Zibo & Suleman, Muhammad Tahir & Yin, Libo & Zhang, Hongwei, 2022. "Forecasting the volatility of crude oil futures: The role of oil investor attention and its regime switching characteristics under a high-frequency framework," Energy, Elsevier, vol. 238(PA).
    19. Xue Gong & Xin Ye & Weiguo Zhang & Yue Zhang, 2023. "Predicting energy futures high-frequency volatility using technical indicators: The role of interaction," Post-Print hal-04232649, HAL.
    20. Fenghua Wen & Yupei Zhao & Minzhi Zhang & Chunyan Hu, 2019. "Forecasting realized volatility of crude oil futures with equity market uncertainty," Applied Economics, Taylor & Francis Journals, vol. 51(59), pages 6411-6427, December.
    21. Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
    22. Eduardo Cavallo & Sebastian Galiani & Ilan Noy & Juan Pantano, 2013. "Catastrophic Natural Disasters and Economic Growth," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1549-1561, December.
    23. Song, Yixuan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market volatility: A newspaper-based predictor regarding petroleum market volatility," Resources Policy, Elsevier, vol. 79(C).
    24. Lin, Boqiang & Wesseh, Presley K. & Appiah, Michael Owusu, 2014. "Oil price fluctuation, volatility spillover and the Ghanaian equity market: Implication for portfolio management and hedging effectiveness," Energy Economics, Elsevier, vol. 42(C), pages 172-182.
    25. Wang, Hua & Xu, Liao & Sharma, Susan Sunila, 2021. "Does investor attention increase stock market volatility during the COVID-19 pandemic?," Pacific-Basin Finance Journal, Elsevier, vol. 69(C).
    26. Tumala, Mohammed M. & Salisu, Afees & Nmadu, Yaaba B., 2023. "Climate change and fossil fuel prices: A GARCH-MIDAS analysis," Energy Economics, Elsevier, vol. 124(C).
    27. Kang, Sang Hoon & Yoon, Seong-Min, 2013. "Modeling and forecasting the volatility of petroleum futures prices," Energy Economics, Elsevier, vol. 36(C), pages 354-362.
    28. Chen, Yan & Zhang, Lei & Zhang, Feipeng, 2024. "Forecasting crude oil volatility and stock volatility: New evidence from the quantile autoregressive model," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    29. Xie, Qiwei & Hao, Jingjing & Li, Jingyu & Zheng, Xiaolong, 2022. "Carbon price prediction considering climate change: A text-based framework," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 382-401.
    30. Filippo Lechthaler & Lisa Leinert, 2019. "Moody oil: What is driving the crude oil price?," Empirical Economics, Springer, vol. 57(5), pages 1547-1578, November.
    31. Xu, Yongan & Duong, Duy & Xu, Hualong, 2023. "Attention! Predicting crude oil prices from the perspective of extreme weather," Finance Research Letters, Elsevier, vol. 57(C).
    32. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2004. "Analytical Evaluation Of Volatility Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(4), pages 1079-1110, November.
    33. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    34. Yao, Can-Zhong & Li, Hong-Yu, 2020. "Time-varying lead–lag structure between investor sentiment and stock market," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    35. Xu, Hai-Chuan & Zhou, Wei-Xing & Sornette, Didier, 2017. "Time-dependent lead-lag relationship between the onshore and offshore Renminbi exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 49(C), pages 173-183.
    36. Daniel Andrei & Michael Hasler, 2015. "Investor Attention and Stock Market Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 33-72.
    37. Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
    38. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    39. Yang, Yan-Hong & Shao, Ying-Hui, 2020. "Time-dependent lead-lag relationships between the VIX and VIX futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    40. Noth, Felix & Schüwer, Ulrich, 2023. "Natural disasters and bank stability: Evidence from the U.S. financial system," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    41. Chen, Rongda & Yu, Jingjing & Jin, Chenglu & Bao, Weiwei, 2019. "Internet finance investor sentiment and return comovement," Pacific-Basin Finance Journal, Elsevier, vol. 56(C), pages 151-161.
    42. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    43. Fenghua Wen & Jihong Xiao & Chuangxia Huang & Xiaohua Xia, 2018. "Interaction between oil and US dollar exchange rate: nonlinear causality, time-varying influence and structural breaks in volatility," Applied Economics, Taylor & Francis Journals, vol. 50(3), pages 319-334, January.
    44. Xu, Bing & Ouenniche, Jamal, 2012. "A data envelopment analysis-based framework for the relative performance evaluation of competing crude oil prices' volatility forecasting models," Energy Economics, Elsevier, vol. 34(2), pages 576-583.
    45. Cunado, Juncal & Jo, Soojin & Perez de Gracia, Fernando, 2015. "Macroeconomic impacts of oil price shocks in Asian economies," Energy Policy, Elsevier, vol. 86(C), pages 867-879.
    46. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    47. Batten, Jonathan A. & Maddox, Grace E. & Young, Martin R., 2021. "Does weather, or energy prices, affect carbon prices?," Energy Economics, Elsevier, vol. 96(C).
    48. Gong, Xue & Ye, Xin & Zhang, Weiguo & Zhang, Yue, 2023. "Predicting energy futures high-frequency volatility using technical indicators: The role of interaction," Energy Economics, Elsevier, vol. 119(C).
    49. Alok Kumar & Charles M.C. Lee, 2006. "Retail Investor Sentiment and Return Comovements," Journal of Finance, American Finance Association, vol. 61(5), pages 2451-2486, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Rongda & Bao, Weiwei & Jin, Chenglu, 2021. "Investor sentiment and predictability for volatility on energy futures Markets: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 112-129.
    2. Liu, Yuanyuan & Niu, Zibo & Suleman, Muhammad Tahir & Yin, Libo & Zhang, Hongwei, 2022. "Forecasting the volatility of crude oil futures: The role of oil investor attention and its regime switching characteristics under a high-frequency framework," Energy, Elsevier, vol. 238(PA).
    3. Gong, Xue & Lai, Ping & He, Mengxi & Wen, Danyan, 2024. "Climate risk and energy futures high frequency volatility prediction," Energy, Elsevier, vol. 307(C).
    4. Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).
    5. Li, Wenlan & Cheng, Yuxiang & Fang, Qiang, 2020. "Forecast on silver futures linked with structural breaks and day-of-the-week effect," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    6. Chatziantoniou, Ioannis & Degiannakis, Stavros & Filis, George, 2019. "Futures-based forecasts: How useful are they for oil price volatility forecasting?," Energy Economics, Elsevier, vol. 81(C), pages 639-649.
    7. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    8. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    9. Xu Gong & Boqiang Lin, 2022. "Predicting the volatility of crude oil futures: The roles of leverage effects and structural changes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 610-640, January.
    10. Liu, Wenwen & Zhao, Peng & Luo, Ziyang & Tang, Miaomiao, 2024. "The dynamic impact of network attention on natural resources prices in pre-and post-Russian-Ukrainian war," Resources Policy, Elsevier, vol. 97(C).
    11. Xu, Zhiwei & Gan, Shiqi & Hua, Xia & Xiong, Yujie, 2024. "Can the sentiment of the official media predict the return volatility of the Chinese crude oil futures?," Energy Economics, Elsevier, vol. 140(C).
    12. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    13. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    14. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    15. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    16. Zhu, Xuehong & Zhang, Hongwei & Zhong, Meirui, 2017. "Volatility forecasting using high frequency data: The role of after-hours information and leverage effects," Resources Policy, Elsevier, vol. 54(C), pages 58-70.
    17. Degiannakis, Stavros & Filis, George, 2016. "Forecasting oil price realized volatility: A new approach," MPRA Paper 69105, University Library of Munich, Germany.
    18. Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian & Shahzad, Syed Jawad Hussain, 2020. "The predictive power of oil price shocks on realized volatility of oil: A note," Resources Policy, Elsevier, vol. 69(C).
    19. Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
    20. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0314579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.