IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i6d10.1007_s10614-024-10680-8.html
   My bibliography  Save this article

Systemic Financial Risk of Stock Market Based on Multiscale Networks

Author

Listed:
  • Youtao Xiang

    (Inner Mongolia University)

  • Sumuya Borjigin

    (Inner Mongolia University)

Abstract

This paper investigates the connectedness among 36 financial institutions in China from time–frequency perspective. Specifically, using MEMD and Elastic-Net-VAR methods, we construct multiscale spillover networks, and explore the topological characteristics from system-level and institution-level measures. Our results indicate that the risk contagion between financial institutions of different frequencies exhibit heterogeneity: (1) at a system level, the network characteristics and evolution behaviors in multiscale networks vary across different time scales. Multiscale networks reveal certain unique features that would otherwise not be detected in a single layer analysis, which offers more valuable information on the connectedness among financial institutions; (2) at an institution level, financial institutions play various roles in receiving or sending shocks through different channels of risk spillover or contagion, and the systemic importance of financial institutions varies across different frequency networks. Overall, our multiscale spillover networks provide new insights for participants in financial market, particularly investors or hedgers with varying investment horizons.

Suggested Citation

  • Youtao Xiang & Sumuya Borjigin, 2025. "Systemic Financial Risk of Stock Market Based on Multiscale Networks," Computational Economics, Springer;Society for Computational Economics, vol. 65(6), pages 3259-3294, June.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10680-8
    DOI: 10.1007/s10614-024-10680-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10680-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10680-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabauer, David & Gupta, Rangan & Marfatia, Hardik A. & Miller, Stephen M., 2024. "Estimating U.S. housing price network connectedness: Evidence from dynamic Elastic Net, Lasso, and ridge vector autoregressive models," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 349-362.
    2. Huang, Yanmei & Hasan, Najmul & Deng, Changrui & Bao, Yukun, 2022. "Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting," Energy, Elsevier, vol. 239(PC).
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    5. Nazlioglu, Saban & Soytas, Ugur & Gupta, Rangan, 2015. "Oil prices and financial stress: A volatility spillover analysis," Energy Policy, Elsevier, vol. 82(C), pages 278-288.
    6. Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
    7. Sylvain Benoit & Jean-Edouard Colliard & Christophe Hurlin & Christophe Pérignon, 2017. "Where the Risks Lie: A Survey on Systemic Risk," Review of Finance, European Finance Association, vol. 21(1), pages 109-152.
    8. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    9. Elsayed, Ahmed H. & Naifar, Nader & Nasreen, Samia & Tiwari, Aviral Kumar, 2022. "Dependence structure and dynamic connectedness between green bonds and financial markets: Fresh insights from time-frequency analysis before and during COVID-19 pandemic," Energy Economics, Elsevier, vol. 107(C).
    10. Gunay, Samet & Goodell, John W. & Muhammed, Shahnawaz & Kirimhan, Destan, 2023. "Frequency connectedness between FinTech, NFT and DeFi: Considering linkages to investor sentiment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    11. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    12. Cui, Jinxin & Maghyereh, Aktham, 2023. "Time-frequency dependence and connectedness among global oil markets: Fresh evidence from higher-order moment perspective," Journal of Commodity Markets, Elsevier, vol. 30(C).
    13. Cagli, Efe Caglar & Mandaci, Pinar Evrim, 2023. "Time and frequency connectedness of uncertainties in cryptocurrency, stock, currency, energy, and precious metals markets," Emerging Markets Review, Elsevier, vol. 55(C).
    14. Mensi, Walid & Al Rababa'a, Abdel Razzaq & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Asymmetric spillover and network connectedness between crude oil, gold, and Chinese sector stock markets," Energy Economics, Elsevier, vol. 98(C).
    15. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    16. Xiang, Youtao & Borjigin, Sumuya, 2023. "Downside and upside risk spillovers between financial industry and real economy based on linear and nonlinear networks," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 1337-1374.
    17. Gang-Jin Wang & Shuyue Yi & Chi Xie & H. Eugene Stanley, 2021. "Multilayer information spillover networks: measuring interconnectedness of financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 21(7), pages 1163-1185, July.
    18. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    19. Wang, Xunxiao & Wang, Yudong, 2019. "Volatility spillovers between crude oil and Chinese sectoral equity markets: Evidence from a frequency dynamics perspective," Energy Economics, Elsevier, vol. 80(C), pages 995-1009.
    20. Abreu, Dilip & Brunnermeier, Markus K., 2002. "Synchronization risk and delayed arbitrage," Journal of Financial Economics, Elsevier, vol. 66(2-3), pages 341-360.
    21. Gong, Jue & Wang, Gang-Jin & Zhou, Yang & Zhu, You & Xie, Chi & Foglia, Matteo, 2023. "Spreading of cross-market volatility information: Evidence from multiplex network analysis of volatility spillovers," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 83(C).
    22. Jinxin Cui & Aktham Maghyereh, 2022. "Time–frequency co-movement and risk connectedness among cryptocurrencies: new evidence from the higher-order moments before and during the COVID-19 pandemic," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-56, December.
    23. Matthew Elliott & Benjamin Golub & Matthew O. Jackson, 2014. "Financial Networks and Contagion," American Economic Review, American Economic Association, vol. 104(10), pages 3115-3153, October.
    24. L. Bargigli & G. di Iasio & L. Infante & F. Lillo & F. Pierobon, 2015. "The multiplex structure of interbank networks," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 673-691, April.
    25. Heider, Florian & Hoerova, Marie & Holthausen, Cornelia, 2015. "Liquidity hoarding and interbank market rates: The role of counterparty risk," Journal of Financial Economics, Elsevier, vol. 118(2), pages 336-354.
    26. Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
    27. Dai, Zhifeng & Zhu, Junxin & Zhang, Xinhua, 2022. "Time-frequency connectedness and cross-quantile dependence between crude oil, Chinese commodity market, stock market and investor sentiment," Energy Economics, Elsevier, vol. 114(C).
    28. Zhang, Xu & Yang, Xian & He, Qizhi, 2022. "Multi-scale systemic risk and spillover networks of commodity markets in the bullish and bearish regimes," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    29. Wang, Gang-Jin & Xie, Chi & Jiang, Zhi-Qiang & Eugene Stanley, H., 2016. "Who are the net senders and recipients of volatility spillovers in China’s financial markets?," Finance Research Letters, Elsevier, vol. 18(C), pages 255-262.
    30. Jammazi, Rania & Reboredo, Juan C., 2016. "Dependence and risk management in oil and stock markets. A wavelet-copula analysis," Energy, Elsevier, vol. 107(C), pages 866-888.
    31. Jin, Xiu & Liu, Yueli & Yu, Jinming & Huang, Weiqiang, 2023. "COVID-19 and extreme risk spillovers between oil and BRICS stock markets: A multiscale perspective," The North American Journal of Economics and Finance, Elsevier, vol. 68(C).
    32. Ren, Yinghua & Zhao, Wanru & You, Wanhai & Zhu, Huiming, 2022. "Multiscale features of extreme risk spillover networks among global stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    33. Sylvain Benoit & Jean-Edouard Colliard & Christophe Hurlin & Christophe Pérignon, 2017. "Where the Risks Lie: A Survey on Systemic Risk," Review of Finance, European Finance Association, vol. 21(1), pages 109-152.
    34. Adams-Kane, Jonathon & Jia, Yueqing & Lim, Jamus Jerome, 2015. "Global transmission channels for international bank lending in the 2007–09 financial crisist," Journal of International Money and Finance, Elsevier, vol. 56(C), pages 97-113.
    35. Luo, Changqing & Liu, Lan & Wang, Da, 2021. "Multiscale financial risk contagion between international stock markets: Evidence from EMD-Copula-CoVaR analysis," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    36. Dutta, Anupam & Bouri, Elie & Roubaud, David, 2019. "Nonlinear relationships amongst the implied volatilities of crude oil and precious metals," Resources Policy, Elsevier, vol. 61(C), pages 473-478.
    37. Xin Yang & Shan Chen & Hong Liu & Xiaoguang Yang & Chuangxia Huang, 2023. "Jump volatility spillover network based measurement of systemic importance of Chinese financial institutions," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1201-1213, April.
    38. Youtao Xiang & Sumuya Borjigin, 2024. "High–low volatility spillover network between economic policy uncertainty and commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1295-1319, August.
    39. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Youtao & Borjigin, Sumuya, 2024. "Multilayer networks for measuring interconnectedness among global stock markets through the lens of trading volume-price relationship," Global Finance Journal, Elsevier, vol. 62(C).
    2. Dai, Zhifeng & Tang, Rui & Zhang, Xiaotong, 2023. "A new multilayer network for measuring interconnectedness among the energy firms," Energy Economics, Elsevier, vol. 124(C).
    3. Chen, Yan & Wang, Gang-Jin & Zhu, You & Xie, Chi & Uddin, Gazi Salah, 2023. "Quantile connectedness and the determinants between FinTech and traditional financial institutions: Evidence from China," Global Finance Journal, Elsevier, vol. 58(C).
    4. Youtao Xiang & Sumuya Borjigin, 2024. "High–low volatility spillover network between economic policy uncertainty and commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1295-1319, August.
    5. Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
    6. Foglia, Matteo & Di Tommaso, Caterina & Wang, Gang-Jin & Pacelli, Vincenzo, 2024. "Interconnectedness between stock and credit markets: The role of European G-SIBs in a multilayer perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    7. Ouyang, Zisheng & Zhou, Xuewei, 2023. "Multilayer networks in the frequency domain: Measuring extreme risk connectedness of Chinese financial institutions," Research in International Business and Finance, Elsevier, vol. 65(C).
    8. Raisul Islam & Vladimir Volkov, 2022. "Contagion or interdependence? Comparing spillover indices," Empirical Economics, Springer, vol. 63(3), pages 1403-1455, September.
    9. Ouyang, Zisheng & Zhou, Xuewei & Wang, Gang-jin & Liu, Shuwen & Lu, Min, 2024. "Multilayer networks in the frequency domain: Measuring volatility connectedness among Chinese financial institutions," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 909-928.
    10. Ouyang, Zisheng & Zhou, Xuewei & Lu, Min & Liu, Ke, 2024. "Imported financial risk in global stock markets: Evidence from the interconnected network," Research in International Business and Finance, Elsevier, vol. 69(C).
    11. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    12. Liu, Jiahao & Zhu, Bo & Hu, Xin, 2024. "Systemic risk spillovers among global energy firms: Does geopolitical risk matter?," Energy Economics, Elsevier, vol. 140(C).
    13. Chen, Chuanglian & Zhou, Lichao & Sun, Chuanwang & Lin, Yuting, 2024. "Does oil future increase the network systemic risk of financial institutions in China?," Applied Energy, Elsevier, vol. 364(C).
    14. Wang, Gang-Jin & Xie, Chi & Zhao, Longfeng & Jiang, Zhi-Qiang, 2018. "Volatility connectedness in the Chinese banking system: Do state-owned commercial banks contribute more?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 205-230.
    15. Zhou, Bin & Shi, Huai-Long, 2024. "Quantile volatility connectedness among themes and sectors: Novel evidence from China," The Quarterly Review of Economics and Finance, Elsevier, vol. 98(C).
    16. Egger, Peter H. & Li, Jie & Zhu, Jiaqing, 2023. "The network and own effects of global-systemically-important-bank designations," Journal of International Money and Finance, Elsevier, vol. 136(C).
    17. McLemore, Ping & Mihov, Atanas & Sanz, Leandro, 2022. "Global banks and systemic risk: The dark side of country financial connectedness," Journal of International Money and Finance, Elsevier, vol. 129(C).
    18. Wen, Tiange & Wang, Gang-Jin, 2020. "Volatility connectedness in global foreign exchange markets," Journal of Multinational Financial Management, Elsevier, vol. 54(C).
    19. Zhou, Xuewei & Ouyang, Zisheng & Lu, Min & Ouyang, Zhongzhe, 2024. "Multilayer network analysis of idiosyncratic volatility connectedness: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 88(C).
    20. Wu, Fei & Zhang, Dayong & Zhang, Zhiwei, 2019. "Connectedness and risk spillovers in China’s stock market: A sectoral analysis," Economic Systems, Elsevier, vol. 43(3).

    More about this item

    Keywords

    Financial institutions; Multiscale risk spillover networks; Time scales; Stock market; Multivariate empirical mode decomposition;
    All these keywords.

    JEL classification:

    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G51 - Financial Economics - - Household Finance - - - Household Savings, Borrowing, Debt, and Wealth
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10680-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.