IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v88y2023icp1337-1374.html
   My bibliography  Save this article

Downside and upside risk spillovers between financial industry and real economy based on linear and nonlinear networks

Author

Listed:
  • Xiang, Youtao
  • Borjigin, Sumuya

Abstract

The spillover effects between financial sectors and real economy in different risk levels are of concern for investors and regulatory authorities. Firstly, based on the sector returns of China, the VaRs at different quantiles are estimated by MVMQ-CAViaR model. Then, we construct linear and nonlinear risk spillover networks in downside, normal and upside cases by employing DY and nonlinear Granger causality methods. Finally, we analyze topological characteristics of linear and nonlinear risk spillover networks at the system and sector levels. The results show that linear and nonlinear risk spillover networks in different risk levels exhibit various topology properties, they are unevenly spread over each risk level. At the system-level, we observe that there is a significant difference between linear and nonlinear risk spillover networks in uniqueness and overlapping. At the sector-level, the financial sectors (such as DF and RE sectors) can form a certain spillover effect on sectors of real economy across quantiles, but the net spillover effects of the financial sectors are smaller than that of some real economy sectors. Finally, the crisis shocks have impact on risk spillover effects between financial sectors and real economy. In downside and upside cases, the spillover effects between sectors during crisis period is higher than that during pre-crisis period.

Suggested Citation

  • Xiang, Youtao & Borjigin, Sumuya, 2023. "Downside and upside risk spillovers between financial industry and real economy based on linear and nonlinear networks," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 1337-1374.
  • Handle: RePEc:eee:reveco:v:88:y:2023:i:c:p:1337-1374
    DOI: 10.1016/j.iref.2023.07.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056023002769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2023.07.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jianping & Li, Jingyu & Zhu, Xiaoqian & Yao, Yinhong & Casu, Barbara, 2020. "Risk spillovers between FinTech and traditional financial institutions: Evidence from the U.S," International Review of Financial Analysis, Elsevier, vol. 71(C).
    2. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    3. Bekiros, Stelios D. & Diks, Cees G.H., 2008. "The nonlinear dynamic relationship of exchange rates: Parametric and nonparametric causality testing," Journal of Macroeconomics, Elsevier, vol. 30(4), pages 1641-1650, December.
    4. Wen, Danyan & Wang, Gang-Jin & Ma, Chaoqun & Wang, Yudong, 2019. "Risk spillovers between oil and stock markets: A VAR for VaR analysis," Energy Economics, Elsevier, vol. 80(C), pages 524-535.
    5. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    6. Chen, Lin & Wen, Fenghua & Li, Wanyang & Yin, Hua & Zhao, Lili, 2022. "Extreme risk spillover of the oil, exchange rate to Chinese stock market: Evidence from implied volatility indexes," Energy Economics, Elsevier, vol. 107(C).
    7. Wang, Jie & Liu, Tangyong & Pan, Na, 2023. "Analyzing quantile spillover effects among international financial markets," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    8. Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh & Roubaud, David, 2021. "Quantile connectedness in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    9. Ji, Qiang & Liu, Bing-Yue & Zhao, Wan-Li & Fan, Ying, 2020. "Modelling dynamic dependence and risk spillover between all oil price shocks and stock market returns in the BRICS," International Review of Financial Analysis, Elsevier, vol. 68(C).
    10. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    11. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    12. Bekiros, Stelios D., 2014. "Exchange rates and fundamentals: Co-movement, long-run relationships and short-run dynamics," Journal of Banking & Finance, Elsevier, vol. 39(C), pages 117-134.
    13. Sun, Qingru & Gao, Xiangyun & An, Haizhong & Guo, Sui & Liu, Xueyong & Wang, Ze, 2021. "Which time-frequency domain dominates spillover in the Chinese energy stock market?," International Review of Financial Analysis, Elsevier, vol. 73(C).
    14. Tomohiro Ando & Matthew Greenwood-Nimmo & Yongcheol Shin, 2022. "Quantile Connectedness: Modeling Tail Behavior in the Topology of Financial Networks," Management Science, INFORMS, vol. 68(4), pages 2401-2431, April.
    15. Balcilar, Mehmet & Elsayed, Ahmed H. & Hammoudeh, Shawkat, 2023. "Financial connectedness and risk transmission among MENA countries: Evidence from connectedness network and clustering analysis1," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    16. Feng, Sida & Huang, Shupei & Qi, Yabin & Liu, Xueyong & Sun, Qingru & Wen, Shaobo, 2018. "Network features of sector indexes spillover effects in China: A multi-scale view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 461-473.
    17. Qian, Biyu & Wang, Gang-Jin & Feng, Yusen & Xie, Chi, 2022. "Partial cross-quantilogram networks: Measuring quantile connectedness of financial institutions," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    18. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    19. Baur, Dirk G., 2012. "Financial contagion and the real economy," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2680-2692.
    20. Mensi, Walid & Al Rababa'a, Abdel Razzaq & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Asymmetric spillover and network connectedness between crude oil, gold, and Chinese sector stock markets," Energy Economics, Elsevier, vol. 98(C).
    21. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Adewuyi, Adeolu O. & Lee, Chien-Chiang, 2022. "Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Energy Economics, Elsevier, vol. 113(C).
    22. Ren, Yinghua & Zhao, Wanru & You, Wanhai & Zhu, Huiming, 2022. "Multiscale features of extreme risk spillover networks among global stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Youtao & Borjigin, Sumuya, 2024. "Multilayer networks for measuring interconnectedness among global stock markets through the lens of trading volume-price relationship," Global Finance Journal, Elsevier, vol. 62(C).
    2. Youtao Xiang & Sumuya Borjigin, 2024. "High–low volatility spillover network between economic policy uncertainty and commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1295-1319, August.
    3. Yang, Jie & Feng, Yun, 2023. "Market inefficiency spillover network across different regimes," Finance Research Letters, Elsevier, vol. 58(PC).
    4. Lin, Zi-Luo & Ouyang, Wen-Pei & Yu, Qing-Rui, 2024. "Risk spillover effects of the Israel–Hamas War on global financial and commodity markets: A time–frequency and network analysis," Finance Research Letters, Elsevier, vol. 66(C).
    5. Ouyang, Minhua & Xiao, Hailian, 2024. "Tail risk spillovers among Chinese stock market sectors," Finance Research Letters, Elsevier, vol. 62(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yan & Wang, Gang-Jin & Zhu, You & Xie, Chi & Uddin, Gazi Salah, 2023. "Quantile connectedness and the determinants between FinTech and traditional financial institutions: Evidence from China," Global Finance Journal, Elsevier, vol. 58(C).
    2. Xiaoye Jin, 2024. "Salience theory value spillovers between China’s systemically important banks: evidence from quantile connectedness," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-39, December.
    3. Jian, Zhihong & Lu, Haisong & Zhu, Zhican & Xu, Huiling, 2023. "Frequency heterogeneity of tail connectedness: Evidence from global stock markets," Economic Modelling, Elsevier, vol. 125(C).
    4. Cheng, Tingting & Liu, Fei & Liu, Junli & Yao, Wenying, 2024. "Tail connectedness: Measuring the volatility connectedness network of equity markets during crises," Pacific-Basin Finance Journal, Elsevier, vol. 87(C).
    5. Umar, Zaghum & Bossman, Ahmed, 2023. "Quantile connectedness between oil price shocks and exchange rates," Resources Policy, Elsevier, vol. 83(C).
    6. Al-Fayoumi, Nedal & Bouri, Elie & Abuzayed, Bana, 2023. "Decomposed oil price shocks and GCC stock market sector returns and volatility," Energy Economics, Elsevier, vol. 126(C).
    7. Xu, Qiuhua & Yan, Haoyang & Zhao, Tianyu, 2022. "Contagion effect of systemic risk among industry sectors in China’s stock market," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    8. Chen, Huayi & Shi, Huai-Long & Zhou, Wei-Xing, 2024. "Carbon volatility connectedness and the role of external uncertainties: Evidence from China," Journal of Commodity Markets, Elsevier, vol. 33(C).
    9. Tiantian Liu & Yulian Zhang & Wenting Zhang & Shigeyuki Hamori, 2024. "Quantile Connectedness of Uncertainty Indices, Carbon Emissions, Energy, and Green Assets: Insights from Extreme Market Conditions," Energies, MDPI, vol. 17(22), pages 1-24, November.
    10. Ouyang, Zisheng & Zhou, Xuewei, 2023. "Multilayer networks in the frequency domain: Measuring extreme risk connectedness of Chinese financial institutions," Research in International Business and Finance, Elsevier, vol. 65(C).
    11. Liu, Zixin & Hu, Jun & Zhang, Shuguang & He, Zhipeng, 2024. "Risk spillovers among oil, gold, stock, and foreign exchange markets: Evidence from G20 economies," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    12. Ouyang, Zisheng & Zhou, Xuewei, 2023. "Interconnected networks: Measuring extreme risk connectedness between China’s financial sector and real estate sector," International Review of Financial Analysis, Elsevier, vol. 90(C).
    13. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    14. Ghosh, Bikramaditya & Pham, Linh & Teplova, Tamara & Umar, Zaghum, 2023. "COVID-19 and the quantile connectedness between energy and metal markets," Energy Economics, Elsevier, vol. 117(C).
    15. Zhongzheng, Wang, 2023. "Extreme risk transmission mechanism between oil, green bonds and new energy vehicles," Innovation and Green Development, Elsevier, vol. 2(3).
    16. Dai, Zhifeng & Zhang, Xiaotong & Yin, Zhujia, 2023. "Extreme time-varying spillovers between high carbon emission stocks, green bond and crude oil: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 118(C).
    17. Xiang, Youtao & Borjigin, Sumuya, 2024. "Multilayer networks for measuring interconnectedness among global stock markets through the lens of trading volume-price relationship," Global Finance Journal, Elsevier, vol. 62(C).
    18. Nong, Huifu & Liu, Hongxiao, 2023. "Measuring the frequency and quantile connectedness between policy categories and global oil price," Resources Policy, Elsevier, vol. 83(C).
    19. Chen, Yu & Lin, Boqiang, 2022. "Quantifying the extreme spillovers on worldwide ESG leaders' equity," International Review of Financial Analysis, Elsevier, vol. 84(C).
    20. Youtao Xiang & Sumuya Borjigin, 2024. "High–low volatility spillover network between economic policy uncertainty and commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1295-1319, August.

    More about this item

    Keywords

    Risk spillover network; MVMQ-CAViaR; Downside risk; Upside risk;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:88:y:2023:i:c:p:1337-1374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.