IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v55y2020i4d10.1007_s10614-018-9839-0.html
   My bibliography  Save this article

Measuring the Energy Saving and CO2 Emissions Reduction Potential Under China’s Belt and Road Initiative

Author

Listed:
  • Yue-Jun Zhang

    () (Hunan University
    Hunan University)

  • Yan-Lin Jin

    (Hunan University
    Hunan University)

  • Bo Shen

    (Lawrence Berkeley National Laboratory)

Abstract

Belt and Road Initiative (BRI) countries are major energy producers and consumers in the world, and they have enormous potential for energy cooperation, energy saving, and CO2 emissions reduction due to their various resource endowments. However, little quantitative research has been conducted under the BRI in the same framework. Therefore, by developing a data envelopment analysis optimisation model combined with the window analysis method, this paper investigates the energy performance of BRI countries for the period from 1995 to 2015, and evaluate the potential of energy saving and CO2 emissions reduction for each BRI country. The results show that, first, the average energy performance of 56 BRI countries is about 0.69, with evident difference across regions and countries. Specifically, in Sub-Saharan Africa and Europe and Central Asia, energy performance is relatively lower, and their averages are 0.59 and 0.60, respectively; in particular, Ukraine has the lowest energy performance among the 56 BRI countries (0.24); while the energy performance in Middle East and North Africa and South Asia appears relatively higher (0.80 and 0.89, respectively). Second, these 56 BRI countries have great energy saving potential, about 9.95 billion metric tonnes of oil equivalent from 1995 to 2015. Among them, Europe and Central Asia, East Asia and Pacific, and Middle East and North Africa make relatively larger contribution. Finally, these 56 BRI countries may produce potential CO2 emissions reduction of 50.87 billion metric tonnes during the study period, and Europe and Central Asia and East Asia and Pacific contribute the most (45.18% and 25.53%, respectively).

Suggested Citation

  • Yue-Jun Zhang & Yan-Lin Jin & Bo Shen, 2020. "Measuring the Energy Saving and CO2 Emissions Reduction Potential Under China’s Belt and Road Initiative," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1095-1116, April.
  • Handle: RePEc:kap:compec:v:55:y:2020:i:4:d:10.1007_s10614-018-9839-0
    DOI: 10.1007/s10614-018-9839-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-018-9839-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xing-Ping & Cheng, Xiao-Mei & Yuan, Jia-Hai & Gao, Xiao-Jun, 2011. "Total-factor energy efficiency in developing countries," Energy Policy, Elsevier, vol. 39(2), pages 644-650, February.
    2. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    3. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    4. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, Open Access Journal, vol. 9(1), pages 1-19, January.
    5. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    6. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Energy saving potential of utilizing natural ventilation under warm conditions – A case study of Mexico," Applied Energy, Elsevier, vol. 130(C), pages 20-32.
    7. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    8. Yanni Yu & Yongrok Choi, 2015. "Measuring Environmental Performance Under Regional Heterogeneity in China: A Metafrontier Efficiency Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 375-388, October.
    9. A S Camanho & R G Dyson, 1999. "Efficiency, size, benchmarks and targets for bank branches: an application of data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(9), pages 903-915, September.
    10. Turan Katircioglu, Salih, 2013. "Interactions between energy and imports in Singapore: Empirical evidence from conditional error correction models," Energy Policy, Elsevier, vol. 63(C), pages 514-520.
    11. Sheng, Yu & Shi, Xunpeng, 2013. "Energy market integration and equitable growth across countries," Applied Energy, Elsevier, vol. 104(C), pages 319-325.
    12. Du, Julan & Zhang, Yifei, 2018. "Does One Belt One Road initiative promote Chinese overseas direct investment?," China Economic Review, Elsevier, vol. 47(C), pages 189-205.
    13. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    14. Yang, Tian-Jian & Zhang, Yue-Jun & Huang, Jin & Peng, Ruo-Hong, 2013. "Estimating the energy saving potential of telecom operators in China," Energy Policy, Elsevier, vol. 61(C), pages 448-459.
    15. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    16. Bian, Yiwen & He, Ping & Xu, Hao, 2013. "Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach," Energy Policy, Elsevier, vol. 63(C), pages 962-971.
    17. Zhang, Yue-Jun & Hao, Jun-Fang & Song, Juan, 2016. "The CO2 emission efficiency, reduction potential and spatial clustering in China’s industry: Evidence from the regional level," Applied Energy, Elsevier, vol. 174(C), pages 213-223.
    18. Beirne, John & Beulen, Christian & Liu, Guy & Mirzaei, Ali, 2013. "Global oil prices and the impact of China," China Economic Review, Elsevier, vol. 27(C), pages 37-51.
    19. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Haiyue & Wang, Yile & Jiang, Jie & Wu, Peng, 2020. "How green is the “Belt and Road Initiative”? – Evidence from Chinese OFDI in the energy sector," Energy Policy, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    3. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    4. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    5. Bai-Chen Xie & Jie Gao & Shuang Zhang & ZhongXiang Zhang, 2017. "What Factors Affect the Competiveness of Power Generation Sector in China? An Analysis Based on Game Cross-efficiency," Working Papers 2017.12, Fondazione Eni Enrico Mattei.
    6. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, Open Access Journal, vol. 12(2), pages 1-18, January.
    7. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    8. Jie Wu & Qingyuan Zhu & Pengzhen Yin & Malin Song, 2017. "Measuring energy and environmental performance for regions in China by using DEA-based Malmquist indices," Operational Research, Springer, vol. 17(3), pages 715-735, October.
    9. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    10. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    11. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    12. Zanella, Andreia & Camanho, Ana S. & Dias, Teresa G., 2015. "Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(2), pages 517-530.
    13. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    14. Ghosh, Santosh & Yadav, Vinod Kumar & Mukherjee, Vivekananda, 2018. "Evaluation of cumulative impact of partial shading and aerosols on different PV array topologies through combined Shannon's entropy and DEA," Energy, Elsevier, vol. 144(C), pages 765-775.
    15. E G Gomes & M P E Lins, 2008. "Modelling undesirable outputs with zero sum gains data envelopment analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 616-623, May.
    16. Richard Simper & Maximilian J.B. Hall & Wenbin B. Liu & Valentin Zelenyuk & Zhongbao Zhou, 2014. "How Relevant is the Choice of Risk Management Control Variable to Non-parametric Bank Profit Efficiency Analysis?," CEPA Working Papers Series WP122014, School of Economics, University of Queensland, Australia.
    17. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Sahoo, Biresh K. & Mahanty, Biswajit, 2017. "Rationality of energy efficiency improvement targets under the PAT scheme in India – A case of thermal power plants," Energy Economics, Elsevier, vol. 66(C), pages 279-289.
    18. Li, Lei & Chi, Ting & Wang, Shi, 2016. "Is energy utilization among Chinese provinces sustainable?," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 198-206.
    19. Richard Simper & Maximilian J. B. Hall & WenBin Liu & Valentin Zelenyuk & Zhongbao Zhou, 2017. "How relevant is the choice of risk management control variable to non-parametric bank profit efficiency analysis? The case of South Korean banks," Annals of Operations Research, Springer, vol. 250(1), pages 105-127, March.
    20. Jie Zhang & Zhencheng Xing & Jigan Wang, 2016. "Analysis of CO 2 Emission Performance and Abatement Potential for Municipal Industrial Sectors in Jiangsu, China," Sustainability, MDPI, Open Access Journal, vol. 8(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:55:y:2020:i:4:d:10.1007_s10614-018-9839-0. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.