IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12083-d670176.html
   My bibliography  Save this article

The Impact of Cost-of-Production Insurance on Input Expense of Fruit Growing in Ecologically Vulnerable Areas: Evidence from Shaanxi Province of China

Author

Listed:
  • Tao Li

    (College of Economics and Management, Northwest A&F University, Xianyang 712100, China
    These authors contributed equally to this work.)

  • Lihong Chen

    (College of Life Science, Northwest A&F University, Xianyang 712100, China
    These authors contributed equally to this work.)

  • Xiaoxu Li

    (College of Economics and Management, Northwest A&F University, Xianyang 712100, China)

  • Sha Li

    (Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA)

  • Haibing Chen

    (College of Economics and Management, Northwest A&F University, Xianyang 712100, China)

  • Hao Ji

    (College of Economics and Management, Northwest A&F University, Xianyang 712100, China)

Abstract

Planting fruit trees in ecologically vulnerable areas is an effective approach to achieving the goal of ecological protection and improving farmers’ livelihoods. However, in ecologically vulnerable areas, farmers still face agricultural production risks such as natural disasters, diseases, and pests. In order to help fruit growers avoid these risks and ensure the sustainability of their livelihoods, the Chinese government has launched cost-of-production (COP) insurance in these areas. Although previous studies have shown that the purchase of revenue- or yield-based crop insurance will change insured farmers’ input expense of chemicals in agricultural production, the existing literature lacksa discussion on how COP insurance affects the input expense of chemicals in fruit growing. Here, we address the existing research gap from both theoretical and empirical aspects by conducting surveys in 1051 households of fruit growers in the Shaanxi province of China. Theoretical deduction reveals that the COP insurance on input expenditure of chemicals can have an increasing effect. Using the 2SLS model and empirical analysis, we found that the insured fruit growers spent more on using chemical fertilizers and pesticides compared to non-insured fruit growers. These findings demonstrate that the COP insurance’s positive marginal incentive to apply more input expense of chemicals in production dominates the negative moral hazard effect.

Suggested Citation

  • Tao Li & Lihong Chen & Xiaoxu Li & Sha Li & Haibing Chen & Hao Ji, 2021. "The Impact of Cost-of-Production Insurance on Input Expense of Fruit Growing in Ecologically Vulnerable Areas: Evidence from Shaanxi Province of China," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12083-:d:670176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12083/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12083/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeremy G. Weber & Nigel Key & Erik O’Donoghue, 2016. "Does Federal Crop Insurance Make Environmental Externalities from Agriculture Worse?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 707-742.
    2. Bruce A. Babcock & David A. Hennessy, 1996. "Input Demand under Yield and Revenue Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 416-427.
    3. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    4. Jisang Yu & Daniel A. Sumner, 2018. "Effects of subsidized crop insurance on crop choices," Agricultural Economics, International Association of Agricultural Economists, vol. 49(4), pages 533-545, July.
    5. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    6. Barry K. Goodwin & Monte L. Vandeveer & John L. Deal, 2004. "An Empirical Analysis of Acreage Effects of Participation in the Federal Crop Insurance Program," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1058-1077.
    7. Zaura Fadhliani & Jeff Luckstead & Eric J. Wailes, 2019. "The impacts of multiperil crop insurance on Indonesian rice farmers and production," Agricultural Economics, International Association of Agricultural Economists, vol. 50(1), pages 15-26, January.
    8. Smith, Vincent H. & Goodwin, Barry K., 2003. "An Ex Post Evaluation of the Conservation Reserve, Federal Crop Insurance, and Other Government Programs: Program Participation and Soil Erosion," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(2), pages 1-16, August.
    9. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    10. Quiggin, John C. & Karagiannis, Giannis & Stanton, J., 1993. "Crop Insurance And Crop Production: An Empirical Study Of Moral Hazard And Adverse Selection," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 37(2), pages 1-19, August.
    11. Giesbert, Lena & Steiner, Susan, 2011. "Perceptions of (Micro)Insurance in Southern Ghana: The Role of Information and Peer Effects," GIGA Working Papers 183, GIGA German Institute of Global and Area Studies.
    12. Joseph William Glauber, 2016. "The US crop insurance program and WTO disciplines," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 76(1), pages 6-14, May.
    13. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    14. Vincent H. Smith & Barry K. Goodwin, 1996. "Crop Insurance, Moral Hazard, and Agricultural Chemical Use," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 428-438.
    15. Taehoo Kim & Man‐Keun Kim, 2018. "Ex‐post moral hazard in prevented planting," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 671-680, November.
    16. Bharat Ramaswami, 1993. "Supply Response to Agricultural Insurance: Risk Reduction and Moral Hazard Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 914-925.
    17. Kristin H. Roll, 2019. "Moral hazard: the effect of insurance on risk and efficiency," Agricultural Economics, International Association of Agricultural Economists, vol. 50(3), pages 367-375, May.
    18. Jisang Yu & Aaron Smith & Daniel A Sumner, 2018. "Effects of Crop Insurance Premium Subsidies on Crop Acreage," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 91-114.
    19. John K. Horowitz & Erik Lichtenberg, 1993. "Insurance, Moral Hazard, and Chemical Use in Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 926-935.
    20. Zhong, Funing & Zhu, Jing, 2017. "Food Security in China from a Global Perspective," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 32(2), June.
    21. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih-Hsiung Chang & Wu-Hua Chang & Yi-Yu Shih, 2022. "Is Financial Institution Management Effective to Reduce Problems Related to Information Asymmetry in Taiwan?," Bulletin of Applied Economics, Risk Market Journals, vol. 9(2), pages 37-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan He & Xiaoyong Zheng & Roderick Rejesus & Jose Yorobe, 2020. "Input use under cost‐of‐production crop insurance: Theory and evidence," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 343-357, May.
    2. Möhring, Niklas & Dalhaus, Tobias & Enjolras, Geoffroy & Finger, Robert, 2020. "Crop insurance and pesticide use in European agriculture," Agricultural Systems, Elsevier, vol. 184(C).
    3. Jisang Yu & Nathan P. Hendricks, 2020. "Input Use Decisions with Greater Information on Crop Conditions: Implications for Insurance Moral Hazard and the Environment," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 826-845, May.
    4. Feng, Shuaizhang & Han, Yujie & Qiu, Huanguang, 2021. "Does crop insurance reduce pesticide usage? Evidence from China," China Economic Review, Elsevier, vol. 69(C).
    5. Shenan Wu & Barry K. Goodwin & Keith Coble, 2020. "Moral hazard and subsidized crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 131-142, January.
    6. Yu, Jisang & Hendricks, Nathan P., 2017. "Crop Insurance Moral Hazard from Price and Weather Forecasts," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258336, Agricultural and Applied Economics Association.
    7. Coleman, Jane A. & Shaik, Saleem, 2009. "Time-Varying Estimation of Crop Insurance Program in Altering North Dakota Farm Economic Structure," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49516, Agricultural and Applied Economics Association.
    8. Lubowski, Ruben N. & Bucholtz, Shawn & Claassen, Roger & Roberts, Michael J. & Cooper, Joseph C. & Gueorguieva, Anna & Johansson, Robert C., 2006. "Environmental Effects Of Agricultural Land-Use Change: The Role Of Economics And Policy," Economic Research Report 33591, United States Department of Agriculture, Economic Research Service.
    9. Lu, Xun & Che, Yuyuan & Rejesus, Roderick M. & Goodwin, Barry K. & Ghosh, Sujit K. & Paudel, Jayash, 2023. "Unintended environmental benefits of crop insurance: Nitrogen and phosphorus in water bodies," Ecological Economics, Elsevier, vol. 204(PA).
    10. Biram, Hunter D. & Tack, Jesse & Nehring, Richard F., 2022. "Does Crop Insurance Participation Impact Quality-Adjusted Pesticide Usage?," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322136, Agricultural and Applied Economics Association.
    11. Paloch Suchato & Taro Mieno & Karina Schoengold & Timothy Foster, 2022. "The potential for moral hazard behavior in irrigation decisions under crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 53(2), pages 257-273, March.
    12. Glauber, Joseph W., 2017. "Agricultural insurance and the WTO:," IFPRI book chapters, in: Bouët, Antoine & Laborde Debucquet, David (ed.), Agriculture, development, and the global trading system: 2000– 2015, chapter 10, International Food Policy Research Institute (IFPRI).
    13. Chongshang Zhang & Kaiyu Lyu & Chi Zhang, 2024. "The Impact of Crop Insurance on Fertilizer Use: Evidence from Grain Producers in China," Agriculture, MDPI, vol. 14(3), pages 1-13, March.
    14. He, Juan & Zheng, Xiaoyong & Rejesus, Roderick & Yorobe, Jose Jr, 2016. "Estimating the Effect of Crop Insurance on Input Use When Insured Farmers are Monitored," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235225, Agricultural and Applied Economics Association.
    15. Geoffroy Enjolras & Magali Aubert, 2018. "Does crop insurance lead to better environmental practices? Evidence from French farms," Post-Print hal-02048349, HAL.
    16. Jeremy G. Weber & Nigel Key & Erik O’Donoghue, 2016. "Does Federal Crop Insurance Make Environmental Externalities from Agriculture Worse?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 707-742.
    17. Jianru Fu & Ruiyuan Shen & Chao Huang, 2023. "How does price insurance alleviate the fluctuation of agricultural product market? A dynamic analysis based on cobweb model," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(5), pages 202-211.
    18. Geoffroy Enjolras & Magali Aubert, 2020. "How does crop insurance influence pesticide use? Evidence from French farms," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(4), pages 461-485, December.
    19. Ifft, Jennifer & Jodlowski, Margaret, 2018. "Federal crop insurance participation and adoption of sustainable production practices by US corn farms," 166th Seminar, August 30-31, 2018, Galway, West of Ireland 276196, European Association of Agricultural Economists.
    20. Sankalp Sharma & Cory G. Walters, 2020. "Influence of farm size and insured type on crop insurance returns," Agribusiness, John Wiley & Sons, Ltd., vol. 36(3), pages 440-452, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12083-:d:670176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.