IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i17p11058-d906190.html
   My bibliography  Save this article

Green Paradox or Forced Emission Reduction—The Dual Effects of Environmental Regulation on Carbon Emissions

Author

Listed:
  • Kedong Yin

    (Institute of Marine Economy and Management, Shandong University of Finance and Economics, Jinan 250014, China
    School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China)

  • Lu Liu

    (School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China)

  • Haolei Gu

    (School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China)

Abstract

In response to global climate change, China made a commitment about carbon emissions at the UN General Assembly. It will strive to achieve carbon peaking by 2030 and carbon neutrality by 2060. To help China successfully meet its carbon emissions targets this study examines the impact of environmental regulation on carbon emissions from a different perspective. Using panel data from 30 provinces in China as samples, this paper discusses the direct and indirect effect of environmental regulation on carbon emissions and explains the indirect process through four transmission paths: energy consumption structure, industrial structure, technological innovation, and foreign direct investment (FDI). The empirical results show that the direct effect of environmental regulation on carbon emissions presents an inverted U-shaped curve, it means that when the intensity level of environmental regulation is low, it mainly shows the green paradox effect, and with the continuous tightening of environmental laws, it turns into a forced emission reduction on carbon emissions. In addition, we found that under the constraint of environmental regulation conditions, the coal-based energy consumption is still the leading cause of carbon emissions; environmental regulations have contributed to the upgrading of industrial structure and technological advance, which indirectly play a positive role in carbon emission reduction. However, environmental regulation restrains the spillover effect and capital accumulation effect of FDI, which brings a specific degree of hindrance to technological progress and economic development, and is not conducive to carbon emission reduction. Therefore, we have made the following recommendations: China should make reasonable use of environmental policies to regulate carbon emissions according to the situation of each region, optimize the energy structure and increase the proportion of clean energy use, and improve the technology level of related industries to reduce carbon emissions by innovation.

Suggested Citation

  • Kedong Yin & Lu Liu & Haolei Gu, 2022. "Green Paradox or Forced Emission Reduction—The Dual Effects of Environmental Regulation on Carbon Emissions," IJERPH, MDPI, vol. 19(17), pages 1-15, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:11058-:d:906190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/17/11058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/17/11058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Xiqian & Lu, Yi & Wu, Mingqin & Yu, Linhui, 2016. "Does environmental regulation drive away inbound foreign direct investment? Evidence from a quasi-natural experiment in China," Journal of Development Economics, Elsevier, vol. 123(C), pages 73-85.
    2. Randy Becker & Vernon Henderson, 2000. "Effects of Air Quality Regulations on Polluting Industries," Journal of Political Economy, University of Chicago Press, vol. 108(2), pages 379-421, April.
    3. Smulders, Sjak & Tsur, Yacov & Zemel, Amos, 2012. "Announcing climate policy: Can a green paradox arise without scarcity?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 364-376.
    4. Dechezlepretre, Antoine & Glachant, Matthieu & Hascic, Ivan & Johnstone, Nick & Meniere, Yann, 2009. "Invention and Transfer of Climate Change Mitigation Technologies on a Global Scale: A Study Drawing on Patent Data," Sustainable Development Papers 54361, Fondazione Eni Enrico Mattei (FEEM).
    5. Neves, Sónia Almeida & Marques, António Cardoso & Patrício, Margarida, 2020. "Determinants of CO2 emissions in European Union countries: Does environmental regulation reduce environmental pollution?," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 114-125.
    6. Schou, Poul, 2002. " When Environmental Policy Is Superfluous: Growth and Polluting Resources," Scandinavian Journal of Economics, Wiley Blackwell, vol. 104(4), pages 605-620, December.
    7. Hongpeng Guo & Zixu Su & Xiao Yang & Shuang Xu & Hong Pan, 2022. "Greenhouse Gas Emissions from Beef Cattle Breeding Based on the Ecological Cycle Model," IJERPH, MDPI, vol. 19(15), pages 1-15, August.
    8. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    9. Wu, Haitao & Xu, Lina & Ren, Siyu & Hao, Yu & Yan, Guoyao, 2020. "How do energy consumption and environmental regulation affect carbon emissions in China? New evidence from a dynamic threshold panel model," Resources Policy, Elsevier, vol. 67(C).
    10. Zhang, Kun & Zhang, Zong-Yong & Liang, Qiao-Mei, 2017. "An empirical analysis of the green paradox in China: From the perspective of fiscal decentralization," Energy Policy, Elsevier, vol. 103(C), pages 203-211.
    11. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    12. Poul Schou, 2002. "When Environmental Policy is Superfluous: Growth and Polluting Resources," Scandinavian Journal of Economics, Wiley Blackwell, vol. 104(4), pages 605-620, December.
    13. van der Werf, Edwin & Di Maria, Corrado, 2012. "Imperfect Environmental Policy and Polluting Emissions: The Green Paradox and Beyond," International Review of Environmental and Resource Economics, now publishers, vol. 6(2), pages 153-194, March.
    14. Baomin Dong & Jiong Gong & Xin Zhao, 2012. "FDI and environmental regulation: pollution haven or a race to the top?," Journal of Regulatory Economics, Springer, vol. 41(2), pages 216-237, April.
    15. Chen Cao & Feng Zhen & Xianjin Huang, 2022. "How Does Perceived Neighborhood Environment Affect Commuting Mode Choice and Commuting CO 2 Emissions? An Empirical Study of Nanjing, China," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    16. Jeff Tollefson, 2021. "IPCC climate report: Earth is warmer than it’s been in 125,000 years," Nature, Nature, vol. 596(7871), pages 171-172, August.
    17. Yann Ménière & Antoine Dechezleprêtre & Matthieu Glachant & Ivan Hascic & N. Johnstone, 2011. "Invention and transfer of climate change mitigation technologies: a study drawing on patent data," Post-Print hal-00869795, HAL.
    18. Xi Lin & Yongle Zhao & Mahmood Ahmad & Zahoor Ahmed & Husam Rjoub & Tomiwa Sunday Adebayo, 2021. "Linking Innovative Human Capital, Economic Growth, and CO 2 Emissions: An Empirical Study Based on Chinese Provincial Panel Data," IJERPH, MDPI, vol. 18(16), pages 1-18, August.
    19. Simon Condliffe & O. Ashton Morgan, 2009. "The effects of air quality regulations on the location decisions of pollution-intensive manufacturing plants," Journal of Regulatory Economics, Springer, vol. 36(1), pages 83-93, August.
    20. Funda Hatice Sezgin & Yilmaz Bayar & Laura Herta & Marius Dan Gavriletea, 2021. "Do Environmental Stringency Policies and Human Development Reduce CO 2 Emissions? Evidence from G7 and BRICS Economies," IJERPH, MDPI, vol. 18(13), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feifei Ye & Rongyan You & Haitian Lu & Sirui Han & Long-Hao Yang, 2023. "The Classification Impact of Different Types of Environmental Regulation on Chinese Provincial Carbon Emission Efficiency," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    2. Chengqing Liu & Dan Yang & Jun Sun & Yu Cheng, 2023. "The Impact of Environmental Regulations on Pollution and Carbon Reduction in the Yellow River Basin, China," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    3. Lei Wu & Chengao Zhu & Xinhao Song & Junge He, 2023. "Impact of Environmental Regulation on Carbon Emissions in Countries along the Belt and Road—An Empirical Study Based on PSTR Model," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    4. Chen Zhao & Jiaxuan Zhu & Zhiyao Xu & Yixuan Wang & Bin Liu & Lu Yuan & Xiaowen Wang & Jiali Xiong & Yiming Zhao, 2022. "The Effect of Air Pollution Control Auditing on Reducing Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 19(24), pages 1-15, December.
    5. Yichao Xie & Bowen Zhou & Zhenyu Wang & Bo Yang & Liaoyi Ning & Yanhui Zhang, 2023. "Industrial Carbon Footprint (ICF) Calculation Approach Based on Bayesian Cross-Validation Improved Cyclic Stacking," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
    6. Wenjie Li & Muhammad Yaseen Bhutto & Idrees Waris & Tianyang Hu, 2023. "The Nexus between Environmental Corporate Social Responsibility, Green Intellectual Capital and Green Innovation towards Business Sustainability: An Empirical Analysis of Chinese Automobile Manufactur," IJERPH, MDPI, vol. 20(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    2. Lai, Aolin & Wang, Qunwei & Cui, Lianbiao, 2022. "Can market segmentation lead to green paradox? Evidence from China," Energy, Elsevier, vol. 254(PC).
    3. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    4. Yelin Dai & Yue Liu & Xuhui Ding & Chundu Wu & Yu Chen, 2022. "Environmental Regulation Promotes Eco-Efficiency through Industrial Transfer: Evidence from the Yangtze River Economic Belt in China," IJERPH, MDPI, vol. 19(16), pages 1-31, August.
    5. Kedong Yin & Lu Liu & Chong Huang & Yuqing Xiao, 2023. "Can the transfer of polluting industries achieve a win–win situation for both the economy and the environment? Research based on the perspective of environmental regulation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8903-8928, August.
    6. Najm, Sarah & Matsumoto, Ken'ichi, 2020. "Does renewable energy substitute LNG international trade in the energy transition?," Energy Economics, Elsevier, vol. 92(C).
    7. Aliénor Cameron & Marc Baudry, 2023. "The case for carbon leakage and border adjustments: where do economists stand?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(3), pages 435-469, July.
    8. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    9. Wei Jin & ZhongXiang Zhang, 2018. "Capital Accumulation, Green Paradox, and Stranded Assets: An Endogenous Growth Perspective," Working Papers 2018.33, Fondazione Eni Enrico Mattei.
    10. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    11. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    12. Zhao, Xing & Guo, Yifan & Feng, Tianchu, 2023. "Towards green recovery: Natural resources utilization efficiency under the impact of environmental information disclosure," Resources Policy, Elsevier, vol. 83(C).
    13. Hayashi, Daisuke & Huenteler, Joern & Lewis, Joanna I., 2018. "Gone with the wind: A learning curve analysis of China's wind power industry," Energy Policy, Elsevier, vol. 120(C), pages 38-51.
    14. Jingbo Cui & Zhenxuan Wang & Haishan Yu, 2022. "Can International Climate Cooperation Induce Knowledge Spillover to Developing Countries? Evidence from CDM," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(4), pages 923-951, August.
    15. Zhongju Liao & Xiang Zhu, 2022. "A configurational analysis of firms' environmental innovation: Evidence from China's key pollutant‐discharge listed companies," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1511-1522, December.
    16. Jus Darko & Meier Volker, 2015. "Announcing is Bad, Delaying is Worse: Another Pitfall in Well-intended Climate Policy," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 235(3), pages 286-297, June.
    17. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    18. Solmaria Halleck Vega & Antoine Mandel, 2017. "A network-based approach to technology transfers in the context of climate policy," Documents de travail du Centre d'Economie de la Sorbonne 17009, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Cui, Jingbo & Liu, Xi & Sun, Yongping & Yu, Haishan, 2020. "Can CDM projects trigger host countries’ innovation in renewable energy? Evidence of firm-level dataset from China," Energy Policy, Elsevier, vol. 139(C).
    20. Fanny Henriet, Nicolas Maggiar, and Katheline Schubert, 2014. "A Stylized Applied Energy-Economy Model for France," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:11058-:d:906190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.