IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i13p7649-d845368.html
   My bibliography  Save this article

How Does Perceived Neighborhood Environment Affect Commuting Mode Choice and Commuting CO 2 Emissions? An Empirical Study of Nanjing, China

Author

Listed:
  • Chen Cao

    (School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China)

  • Feng Zhen

    (School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China)

  • Xianjin Huang

    (School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China)

Abstract

Exploring the impacts of perceived neighborhood environment on commuting behavior and travel-related CO 2 emissions helps policymakers formulate regional low-carbon transport policies. Most studies have examined the impact of the objective measures of built environment on travel behavior and related CO 2 emissions, and few studies have focused on perceived neighborhood environment. This study develops a structural equation model and uses data from a self-administered survey of urban full-time employees in Nanjing, China to examine the direct and indirect effects of perceived neighborhood environment on commuting mode choice and commuting CO 2 emissions. The study shows that perceived service facilities has a significant direct effect on commuting mode and a significant indirect effect on commuting CO 2 through the mediating effect of commuting mode choice. While socio-demographic variables such as gender have a significant direct impact on commuting mode and commuting CO 2 emissions, they have an indirect impact on commuting mode and commuting CO 2 emissions through the intermediate variables (such as car ownership, perceived neighborhood environment and commuting distance). The conclusions of this study show that the potential of commuting CO 2 emissions reduction in China is enormous, and that policy interventions on commuting would help developing countries such as China achieve the goals of low-carbon transport and sustainable development.

Suggested Citation

  • Chen Cao & Feng Zhen & Xianjin Huang, 2022. "How Does Perceived Neighborhood Environment Affect Commuting Mode Choice and Commuting CO 2 Emissions? An Empirical Study of Nanjing, China," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7649-:d:845368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/13/7649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/13/7649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinhyun Hong & Cynthia Chen, 2014. "The role of the built environment on perceived safety from crime and walking: examining direct and indirect impacts," Transportation, Springer, vol. 41(6), pages 1171-1185, November.
    2. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    3. Pu Lyu & Yongjie Lin & Yuanqing Wang, 2019. "The impacts of household features on commuting carbon emissions: a case study of Xi’an, China," Transportation, Springer, vol. 46(3), pages 841-857, June.
    4. Hickman, Robin & Ashiru, Olu & Banister, David, 2011. "Transitions to low carbon transport futures: strategic conversations from London and Delhi," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1553-1562.
    5. Liang Ma & Jason Cao, 2019. "How perceptions mediate the effects of the built environment on travel behavior?," Transportation, Springer, vol. 46(1), pages 175-197, February.
    6. Kaveh Jahanshahi & Ying Jin, 2016. "The built environment typologies in the UK and their influences on travel behaviour: new evidence through latent categorisation in structural equation modelling," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(1), pages 59-77, February.
    7. Neves, Carlos Eduardo Teixeira & da Silva, Alan Ricardo & Arruda, Fabiana Serra de, 2021. "Exploring the link between built environment and walking choice in São Paulo city, Brazil," Journal of Transport Geography, Elsevier, vol. 93(C).
    8. Cervero, Robert, 1996. "Mixed land-uses and commuting: Evidence from the American Housing Survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 361-377, September.
    9. Ao, Yibin & Zhang, Yuting & Wang, Yan & Chen, Yunfeng & Yang, Linchuan, 2020. "Influences of rural built environment on travel mode choice of rural residents: The case of rural Sichuan," Journal of Transport Geography, Elsevier, vol. 85(C).
    10. Liang Ma & Jennifer Dill & Cynthia Mohr, 2014. "The objective versus the perceived environment: what matters for bicycling?," Transportation, Springer, vol. 41(6), pages 1135-1152, November.
    11. Jiabin Yu & Chen Yang & Shen Zhang & Diankai Zhai & Jianshe Li, 2020. "Comparison Study of Perceived Neighborhood-Built Environment and Elderly Leisure-Time Physical Activity between Hangzhou and Wenzhou, China," IJERPH, MDPI, vol. 17(24), pages 1-12, December.
    12. Yuanqing Wang & Liu Yang & Sunsheng Han & Chao Li & T. V. Ramachandra, 2017. "Urban CO2 emissions in Xi’an and Bangalore by commuters: implications for controlling urban transportation carbon dioxide emissions in developing countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 993-1019, October.
    13. Liao, Yu & Zhang, Junfu, 2021. "Hukou status, housing tenure choice and wealth accumulation in urban China," China Economic Review, Elsevier, vol. 68(C).
    14. Guerra, Erick & Caudillo, Camilo & Monkkonen, Paavo & Montejano, Jorge, 2018. "Urban form, transit supply, and travel behavior in Latin America: Evidence from Mexico's 100 largest urban areas," Transport Policy, Elsevier, vol. 69(C), pages 98-105.
    15. Brand, Christian & Goodman, Anna & Rutter, Harry & Song, Yena & Ogilvie, David, 2013. "Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel," Applied Energy, Elsevier, vol. 104(C), pages 158-169.
    16. Santos, Georgina & Maoh, Hanna & Potoglou, Dimitris & von Brunn, Thomas, 2013. "Factors influencing modal split of commuting journeys in medium-size European cities," Journal of Transport Geography, Elsevier, vol. 30(C), pages 127-137.
    17. Xinyu Cao & Patricia Mokhtarian & Susan Handy, 2007. "Do changes in neighborhood characteristics lead to changes in travel behavior? A structural equations modeling approach," Transportation, Springer, vol. 34(5), pages 535-556, September.
    18. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Brands, Ties & van Oort, Niels & Teller, David, 2021. "Multi-city exploration of built environment and transit mode use: Comparison of Melbourne, Amsterdam and Boston," Journal of Transport Geography, Elsevier, vol. 95(C).
    19. Hou, Yuting & Yap, Winston & Chua, Rochelle & Song, Siqi & Yuen, Belinda, 2020. "The associations between older adults’ daily travel pattern and objective and perceived built environment: A study of three neighbourhoods in Singapore," Transport Policy, Elsevier, vol. 99(C), pages 314-328.
    20. Brand, Christian & Tran, Martino & Anable, Jillian, 2012. "The UK transport carbon model: An integrated life cycle approach to explore low carbon futures," Energy Policy, Elsevier, vol. 41(C), pages 107-124.
    21. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chunjiao Dong, 2021. "Exploring the effects of the built environment on commuting mode choice in neighborhoods near public transit stations: evidence from China," Transportation Planning and Technology, Taylor & Francis Journals, vol. 44(1), pages 111-127, January.
    22. Jinhyun Hong & Qing Shen & Lei Zhang, 2014. "How do built-environment factors affect travel behavior? A spatial analysis at different geographic scales," Transportation, Springer, vol. 41(3), pages 419-440, May.
    23. Gerson Ferrari & André Oliveira Werneck & Danilo Rodrigues da Silva & Irina Kovalskys & Georgina Gómez & Attilio Rigotti & Lilia Yadira Cortés Sanabria & Martha Cecilia Yépez García & Rossina G. Parej, 2020. "Association between Perceived Neighborhood Built Environment and Walking and Cycling for Transport among Inhabitants from Latin America: The ELANS Study," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
    24. Andrew Hook & Victor Court & Benjamin K Sovacool & Steven Sorrell, 2020. "A Systematic Review of the Energy and Climate Impacts of Teleworking," Working Papers hal-03192905, HAL.
    25. Yi Lu & Guibo Sun & Chinmoy Sarkar & Zhonghua Gou & Yang Xiao, 2018. "Commuting Mode Choice in a High-Density City: Do Land-Use Density and Diversity Matter in Hong Kong?," IJERPH, MDPI, vol. 15(5), pages 1-13, May.
    26. ten Dam, Chris Djie & Kramer, Gert Jan & Ettema, Dick & Koning, Vinzenz, 2022. "Spatial and sociodemographic determinants of energy consumption for personal mobility in the Netherlands," Journal of Transport Geography, Elsevier, vol. 98(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Guo & Shuo Yang & Qinghao Zhang & Leyu Zhou & Hui He, 2023. "Examining the Nonlinear and Synergistic Effects of Multidimensional Elements on Commuting Carbon Emissions: A Case Study in Wuhan, China," IJERPH, MDPI, vol. 20(2), pages 1-28, January.
    2. Ying Huang & Yongli Zhang & Feifan Deng & Daiqing Zhao & Rong Wu, 2022. "Impacts of Built-Environment on Carbon Dioxide Emissions from Traffic: A Systematic Literature Review," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    3. Kedong Yin & Lu Liu & Haolei Gu, 2022. "Green Paradox or Forced Emission Reduction—The Dual Effects of Environmental Regulation on Carbon Emissions," IJERPH, MDPI, vol. 19(17), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenyue Yang & Shaojian Wang & Xiaoming Zhao, 2018. "Measuring the Direct and Indirect Effects of Neighborhood-Built Environments on Travel-related CO 2 Emissions: A Structural Equation Modeling Approach," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    2. Wu, Guoqiang & Hong, Jinhyun, 2022. "An analysis of the role of residential location on the relationships between time spent online and non-mandatory activity-travel time use over time," Journal of Transport Geography, Elsevier, vol. 102(C).
    3. Guo, Yuanyuan & He, Sylvia Y., 2021. "The role of objective and perceived built environments in affecting dockless bike-sharing as a feeder mode choice of metro commuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 377-396.
    4. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chengxiang Zhuge & Wenjun Li, 2018. "Application of Bayesian Multilevel Models Using Small and Medium Size City in China: The Case of Changchun," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    5. Lucas, Karen & Philips, Ian & Mulley, Corinne & Ma, Liang, 2018. "Is transport poverty socially or environmentally driven? Comparing the travel behaviours of two low-income populations living in central and peripheral locations in the same city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 622-634.
    6. Shao, Qifan & Zhang, Wenjia & Cao, Xinyu (Jason) & Yang, Jiawen, 2023. "Built environment interventions for emission mitigation: A machine learning analysis of travel-related CO2 in a developing city," Journal of Transport Geography, Elsevier, vol. 110(C).
    7. Xiaoquan Wang & Weifeng Wang & Chaoying Yin, 2023. "Exploring the Relationships between Multilevel Built Environments and Commute Durations in Dual-Earner Households: Does Gender Matter?," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    8. Hong, Jinhyun & Thakuriah, Piyushimita Vonu, 2018. "Examining the relationship between different urbanization settings, smartphone use to access the Internet and trip frequencies," Journal of Transport Geography, Elsevier, vol. 69(C), pages 11-18.
    9. Pu Lyu & Yongjie Lin & Yuanqing Wang, 2019. "The impacts of household features on commuting carbon emissions: a case study of Xi’an, China," Transportation, Springer, vol. 46(3), pages 841-857, June.
    10. Thomas Klinger & Martin Lanzendorf, 2016. "Moving between mobility cultures: what affects the travel behavior of new residents?," Transportation, Springer, vol. 43(2), pages 243-271, March.
    11. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    12. Obregón-Biosca, Saúl A., 2022. "Choice of transport in urban and periurban zones in metropolitan area," Journal of Transport Geography, Elsevier, vol. 100(C).
    13. Sun, Bindong & Liu, Jiahang & Yin, Chun & Cao, Jason, 2022. "Residential and workplace neighborhood environments and life satisfaction: Exploring chain-mediation effects of activity and place satisfaction," Journal of Transport Geography, Elsevier, vol. 104(C).
    14. Liya Yang & Lingqian Hu & Zhenbo Wang, 2019. "The built environment and trip chaining behaviour revisited: The joint effects of the modifiable areal unit problem and tour purpose," Urban Studies, Urban Studies Journal Limited, vol. 56(4), pages 795-817, March.
    15. Ao, Yibin & Yang, Dujuan & Chen, Chuan & Wang, Yan, 2019. "Exploring the effects of the rural built environment on household car ownership after controlling for preference and attitude: Evidence from Sichuan, China," Journal of Transport Geography, Elsevier, vol. 74(C), pages 24-36.
    16. Guan, Xiaodong & Wang, Donggen, 2020. "The multiplicity of self-selection: What do travel attitudes influence first, residential location or work place?," Journal of Transport Geography, Elsevier, vol. 87(C).
    17. Bautista-Hernández, Dorian Antonio, 2021. "Mode choice in commuting and the built environment in México City. Is there a chance for non-motorized travel?," Journal of Transport Geography, Elsevier, vol. 92(C).
    18. Yang, Wei & Hu, Jie & Liu, Yong & Guo, Wenbo, 2023. "Examining the influence of neighborhood and street-level built environment on fitness jogging in Chengdu, China: A massive GPS trajectory data analysis," Journal of Transport Geography, Elsevier, vol. 108(C).
    19. Zhao, Pengjun & Wan, Jie, 2021. "Land use and travel burden of residents in urban fringe and rural areas: An evaluation of urban-rural integration initiatives in Beijing," Land Use Policy, Elsevier, vol. 103(C).
    20. Yibin Ao & Chuan Chen & Dujuan Yang & Yan Wang, 2018. "Relationship between Rural Built Environment and Household Vehicle Ownership: An Empirical Analysis in Rural Sichuan, China," Sustainability, MDPI, vol. 10(5), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7649-:d:845368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.