IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v92y2021ics0966692321000776.html
   My bibliography  Save this article

Mode choice in commuting and the built environment in México City. Is there a chance for non-motorized travel?

Author

Listed:
  • Bautista-Hernández, Dorian Antonio

Abstract

Non-motorized transportation (NMT) has emerged as a mitigating alternative for the negative externalities of motorized travel. This research presents an overview of the intra-metropolitan geography of transportation mode choice in the journey to work in the México City Metropolitan Area (MCMA), which can be seen as a representation of the huge socioeconomic inequalities typical of the Global South. The regression model applied showed that, as expected, socioeconomic variables were strong determinants of mode choice. An increase in age, as well as lower categories of socioeconomic class and educational attainment, were associated with the use of transit and non-motorized travel. Other factors positively associated with bike use were distance to the center, density of mass-transit systems stations, street intersection density, and the flat surface. The pattern of walk commuting with respect to the city center followed a u-shaped curve, while factors significantly positively associated were female, population density, the jobs-housing ratio at the origin, and the density of mass-transit systems stations. The paper concludes with a discussion of the research implications to leverage public policy efforts to promote NMT.

Suggested Citation

  • Bautista-Hernández, Dorian Antonio, 2021. "Mode choice in commuting and the built environment in México City. Is there a chance for non-motorized travel?," Journal of Transport Geography, Elsevier, vol. 92(C).
  • Handle: RePEc:eee:jotrge:v:92:y:2021:i:c:s0966692321000776
    DOI: 10.1016/j.jtrangeo.2021.103024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692321000776
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2021.103024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Etminani-Ghasrodashti, Roya & Ardeshiri, Mahyar, 2016. "The impacts of built environment on home-based work and non-work trips: An empirical study from Iran," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 196-207.
    2. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    3. Guerra, Erick, 2015. "The geography of car ownership in Mexico City: a joint model of households’ residential location and car ownership decisions," Journal of Transport Geography, Elsevier, vol. 43(C), pages 171-180.
    4. Harbering, Marie & Schlüter, Jan, 2020. "Determinants of transport mode choice in metropolitan areas the case of the metropolitan area of the Valley of Mexico," Journal of Transport Geography, Elsevier, vol. 87(C).
    5. Marlon Boarnet, 2011. "A Broader Context for Land Use and Travel Behavior, and a Research Agenda," Journal of the American Planning Association, Taylor & Francis Journals, vol. 77(3), pages 197-213.
    6. Cao, Xinyu (Jason) & Mokhtarian, Patricia L. & Handy, Susan L., 2009. "The relationship between the built environment and nonwork travel: A case study of Northern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 548-559, June.
    7. van Wee, Bert, 2011. "Evaluating the impact of land use on travel behaviour: the environment versus accessibility," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1530-1533.
    8. Zhao, Chunli & Nielsen, Thomas Alexander Sick & Olafsson, Anton Stahl & Carstensen, Trine Agervig & Meng, Xiaoying, 2018. "Urban form, demographic and socio-economic correlates of walking, cycling, and e-biking: Evidence from eight neighborhoods in Beijing," Transport Policy, Elsevier, vol. 64(C), pages 102-112.
    9. Boarnet, Marlon & Crane, Randall, 2001. "The influence of land use on travel behavior: specification and estimation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 823-845, November.
    10. Cervero, Robert, 1996. "Mixed land-uses and commuting: Evidence from the American Housing Survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 361-377, September.
    11. Lawson, Anneka Ruth & McMorrow, Karen & Ghosh, Bidisha, 2013. "Analysis of the non-motorized commuter journeys in major Irish cities," Transport Policy, Elsevier, vol. 27(C), pages 179-188.
    12. Guerra, Erick & Caudillo, Camilo & Monkkonen, Paavo & Montejano, Jorge, 2018. "Urban form, transit supply, and travel behavior in Latin America: Evidence from Mexico's 100 largest urban areas," Transport Policy, Elsevier, vol. 69(C), pages 98-105.
    13. Ahmad, Sohail & Puppim de Oliveira, Jose A., 2016. "Determinants of urban mobility in India: Lessons for promoting sustainable and inclusive urban transportation in developing countries," Transport Policy, Elsevier, vol. 50(C), pages 106-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enayat Mirzaei & Dominique Mignot, 2021. "An Empirical Analysis of Mode Choice Decision for Utilitarian and Hedonic Trips: Evidence from Iran," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    2. Erick Guerra & Shengxiao Li & Ariadna Reyes, 2022. "How do low-income commuters get to work in US and Mexican cities? A comparative empirical assessment," Urban Studies, Urban Studies Journal Limited, vol. 59(1), pages 75-96, January.
    3. Liang Guo & Shuo Yang & Qinghao Zhang & Leyu Zhou & Hui He, 2023. "Examining the Nonlinear and Synergistic Effects of Multidimensional Elements on Commuting Carbon Emissions: A Case Study in Wuhan, China," IJERPH, MDPI, vol. 20(2), pages 1-28, January.
    4. Neves, Carlos Eduardo Teixeira & da Silva, Alan Ricardo & Arruda, Fabiana Serra de, 2021. "Exploring the link between built environment and walking choice in São Paulo city, Brazil," Journal of Transport Geography, Elsevier, vol. 93(C).
    5. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    6. Obregón-Biosca, Saúl A., 2022. "Choice of transport in urban and periurban zones in metropolitan area," Journal of Transport Geography, Elsevier, vol. 100(C).
    7. Jain, Deepty & Tiwari, Geetam, 2019. "Measuring density and diversity to model travel behavior in Indian context," Land Use Policy, Elsevier, vol. 88(C).
    8. Ali Ardeshiri & Akshay Vij, 2019. "A lifestyle-based model of household neighbourhood location and individual travel mode choice behaviours," Papers 1902.01986, arXiv.org, revised Nov 2019.
    9. Dillon, Harya S. & Saphores, Jean-Daniel & Boarnet, Marlon G., 2015. "The impact of urban form and gasoline prices on vehicle usage: Evidence from the 2009 National Household Travel Survey," Research in Transportation Economics, Elsevier, vol. 52(C), pages 23-33.
    10. Zhao, Pengjun & Zhang, Yixue, 2018. "Travel behaviour and life course: Examining changes in car use after residential relocation in Beijing," Journal of Transport Geography, Elsevier, vol. 73(C), pages 41-53.
    11. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    12. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    13. Nicolas, Jean-Pierre & Pelé, Nicolas, 2018. "Reprint of Measuring trends in household expenditures for daily mobility. The case in Lyon, France, between 1995 and 2015," Transport Policy, Elsevier, vol. 65(C), pages 19-29.
    14. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.
    15. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    16. Steven R Gehrke & Kelly J Clifton, 2019. "An activity-related land use mix construct and its connection to pedestrian travel," Environment and Planning B, , vol. 46(1), pages 9-26, January.
    17. Nicolas, Jean-Pierre & Pelé, Nicolas, 2017. "Measuring trends in household expenditures for daily mobility. The case in Lyon, France, between 1995 and 2015," Transport Policy, Elsevier, vol. 59(C), pages 82-92.
    18. Phani Kumar, P. & Ravi Sekhar, Ch. & Parida, Manoranjan, 2018. "Residential dissonance in TOD neighborhoods," Journal of Transport Geography, Elsevier, vol. 72(C), pages 166-177.
    19. Hou, Yuting & Yap, Winston & Chua, Rochelle & Song, Siqi & Yuen, Belinda, 2020. "The associations between older adults’ daily travel pattern and objective and perceived built environment: A study of three neighbourhoods in Singapore," Transport Policy, Elsevier, vol. 99(C), pages 314-328.
    20. Zuo, Ting & Wei, Heng & Liu, Hao & Yang, Y. Jeffrey, 2019. "Bi-level optimization approach for configuring population and employment distributions with minimized vehicle travel demand," Journal of Transport Geography, Elsevier, vol. 74(C), pages 161-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:92:y:2021:i:c:s0966692321000776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.