IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14357-d1250341.html
   My bibliography  Save this article

Industrial Carbon Footprint (ICF) Calculation Approach Based on Bayesian Cross-Validation Improved Cyclic Stacking

Author

Listed:
  • Yichao Xie

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
    Key Laboratory of Integrated Energy Optimization and Secure Operation of Liaoning Province, Northeastern University, Shenyang 110819, China)

  • Bowen Zhou

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
    Key Laboratory of Integrated Energy Optimization and Secure Operation of Liaoning Province, Northeastern University, Shenyang 110819, China)

  • Zhenyu Wang

    (State Grid Electric Power Research Institute Wuhan Efficiency Evaluation Company Limited, Wuhan 430072, China)

  • Bo Yang

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
    Key Laboratory of Integrated Energy Optimization and Secure Operation of Liaoning Province, Northeastern University, Shenyang 110819, China)

  • Liaoyi Ning

    (State Grid Liaoning Electric Power Supply Co., Ltd., Panjin Electric Power Supply Company, Panjin 124010, China)

  • Yanhui Zhang

    (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

Abstract

Achieving carbon neutrality is widely regarded as a key measure to mitigate climate change. The industrial carbon footprint (ICF) calculation, as a foundation to achieve carbon neutrality, primarily relies on roughly estimating direct carbon emissions based on information disclosed by industries. However, these estimates may not be comprehensive, timely, and accurate. This paper elaborates on the issue of ICF calculation, dividing a factory’s carbon emissions into carbon emissions directly produced by appliances and electricity consumption carbon emissions, to estimate the total carbon emissions of the factory. An appliance identification method is proposed based on a cyclic stacking method improved by Bayesian cross-validation, and an appliance state correction module SHMM (state-corrected hidden Markov model) is added to identify the state of the appliance and then to calculate the corresponding appliance carbon emissions. Electricity consumption carbon emissions come from the factory’s electricity consumption and the marginal carbon emission factor of the connected bus. Regarding the selection of artificial intelligence models and cross-validation technique required in the appliance identification method, this paper compares the effects of 7 cross-validation techniques, including stratified K-fold, K-fold, Monte Carlo, etc., on 14 machine learning algorithms such as AdaBoost, XGBoost, feed-forward network, etc., to determine the technique and algorithms required for the final appliance identification method. Experiment results show that the proposed appliance identification method estimates device carbon emissions with an error of less than 3%, which is significantly superior to other models, demonstrating that the proposed approach can achieve comprehensive and accurate ICF calculation.

Suggested Citation

  • Yichao Xie & Bowen Zhou & Zhenyu Wang & Bo Yang & Liaoyi Ning & Yanhui Zhang, 2023. "Industrial Carbon Footprint (ICF) Calculation Approach Based on Bayesian Cross-Validation Improved Cyclic Stacking," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14357-:d:1250341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14357/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14357/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Priyanka & Dharmender Kumar, 2020. "Decision tree classifier: a detailed survey," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 12(3), pages 246-269.
    2. Li, Shupeng & Niu, Liping & Yue, Qiang & Zhang, Tingan, 2022. "Trajectory, driving forces, and mitigation potential of energy-related greenhouse gas (GHG) emissions in China's primary aluminum industry," Energy, Elsevier, vol. 239(PB).
    3. Nguyen, Quyen & Diaz-Rainey, Ivan & Kuruppuarachchi, Duminda, 2021. "Predicting corporate carbon footprints for climate finance risk analyses: A machine learning approach," Energy Economics, Elsevier, vol. 95(C).
    4. Karakurt, Izzet & Aydin, Gokhan, 2023. "Development of regression models to forecast the CO2 emissions from fossil fuels in the BRICS and MINT countries," Energy, Elsevier, vol. 263(PA).
    5. Kedong Yin & Lu Liu & Haolei Gu, 2022. "Green Paradox or Forced Emission Reduction—The Dual Effects of Environmental Regulation on Carbon Emissions," IJERPH, MDPI, vol. 19(17), pages 1-15, September.
    6. Benedetto-Giuseppe Risi & Francesco Riganti-Fulginei & Antonino Laudani, 2022. "Modern Techniques for the Optimal Power Flow Problem: State of the Art," Energies, MDPI, vol. 15(17), pages 1-20, September.
    7. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    8. Zhiqiang Yin & Lin Shi & Junru Luo & Shoukun Xu & Yang Yuan & Xinxin Tan & Jiaqun Zhu, 2023. "Pump Feature Construction and Electrical Energy Consumption Prediction Based on Feature Engineering and LightGBM Algorithm," Sustainability, MDPI, vol. 15(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sapnken, Flavian Emmanuel & Hong, Kwon Ryong & Chopkap Noume, Hermann & Tamba, Jean Gaston, 2024. "A grey prediction model optimized by meta-heuristic algorithms and its application in forecasting carbon emissions from road fuel combustion," Energy, Elsevier, vol. 302(C).
    2. Jeremi Assael & Thibaut Heurtebize & Laurent Carlier & François Soupé, 2023. "Greenhouse gases emissions: estimating corporate non-reported emissions using interpretable machine learning," Working Papers hal-03905325, HAL.
    3. Deng, Jin & Li, Kuo & Fu, Xiaolan & Feng, Youneng & Yuan, Shenfu, 2025. "Effects of Na and Ca on gaseous products evolution behaviors for Fe catalyzed lignite pyrolysis volatiles reforming," Energy, Elsevier, vol. 320(C).
    4. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    5. Yong Shi & Junjie Liu, 2025. "How Climate Risk Affects Enterprise Liquidity: Configuration Effects Based on NCA and fsQCA," Sustainability, MDPI, vol. 17(3), pages 1-18, February.
    6. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    7. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    8. Théophile Anquetin & Guillaume Coqueret & Bertrand Tavin & Lou Welgryn, 2022. "Scopes of carbon emissions and their impact on green portfolios," Post-Print hal-04144612, HAL.
    9. Mkono, Christopher N. & Chuanbo, Shen & Mulashani, Alvin K. & Mwakipunda, Grant Charles, 2023. "Deep learning integrated approach for hydrocarbon source rock evaluation and geochemical indicators prediction in the Jurassic - Paleogene of the Mandawa basin, SE Tanzania," Energy, Elsevier, vol. 284(C).
    10. Abayomi A. Adebiyi & Mathew Habyarimana, 2025. "Systematic Review of Optimization Methodologies for Smart Home Energy Management Systems," Energies, MDPI, vol. 18(19), pages 1-28, October.
    11. Zhu, Xueyuan & Jin, Qiang, 2025. "Exploring the carbon neutrality pathway for China's aluminium industry: An analysis from 1950 to 2060," Applied Energy, Elsevier, vol. 393(C).
    12. Dang, Zheng & Wang, Xiaoming & Bie, Shizhen & Su, Xianbo & Hou, Shihui, 2024. "Experimental study of water occurrence in coal under different negative pressure conditions: Implication for CBM productivity during negative pressure drainage," Energy, Elsevier, vol. 303(C).
    13. Sayed, Enas Taha & Alami, Abdul Hai & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Kamarudin, Siti Kartom & Olabi, A.G., 2024. "Real direct urea fuel Fell operation using standalone Ni-based metal-organic framework prepared by ball mill at room temperature," Energy, Elsevier, vol. 305(C).
    14. Popescu, Ioana-Stefania & Gibon, Thomas & Hitaj, Claudia & Rubin, Mirco & Benetto, Enrico, 2023. "Are SRI funds financing carbon emissions? An input-output life cycle assessment of investment funds," Ecological Economics, Elsevier, vol. 212(C).
    15. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    16. Gao, Yang & Zhang, Jialiang & Chen, Yongqiang & Wang, Ling & Wang, Chengyan, 2023. "Graphite regenerating from retired (LFP) lithium-ion battery: Phase transformation mechanism of impurities in low-temperature sulfation roasting process," Renewable Energy, Elsevier, vol. 204(C), pages 290-299.
    17. Bekun, Festus Victor, 2024. "Race to carbon neutrality in South Africa: What role does environmental technological innovation play?," Applied Energy, Elsevier, vol. 354(PA).
    18. Wang, Junya & Zhao, Qinfang & Ning, Ping & Wen, Shikun, 2024. "Greenhouse gas contribution and emission reduction potential prediction of China's aluminum industry," Energy, Elsevier, vol. 290(C).
    19. Veronica Piccialli & Antonio M. Sudoso, 2021. "Improving Non-Intrusive Load Disaggregation through an Attention-Based Deep Neural Network," Energies, MDPI, vol. 14(4), pages 1-16, February.
    20. Gao, Kaiyang & Yang, Yongliang & Yan, Qi & Li, Purui & Zhang, Yifan & Wang, Guoqin, 2024. "Preparation and study of a sodium alginate film for preventing spontaneous combustion of water-soaked coal in goaf," Energy, Elsevier, vol. 289(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14357-:d:1250341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.