Author
Listed:
- Abayomi A. Adebiyi
(Department of Electrical Power Engineering, Durban University of Technology, Durban 4001, South Africa)
- Mathew Habyarimana
(Department of Electrical Power Engineering, Durban University of Technology, Durban 4001, South Africa)
Abstract
Power systems are undergoing a transformative transition as consumers seek greater participation in managing electricity systems. This shift has given rise to the concept of “prosumers,” individuals who both consume and produce electricity, primarily through renewable energy sources. While renewables offer undeniable environmental benefits, they also introduce significant energy management challenges. One major concern is the variability in energy consumption patterns within households, which can lead to inefficiencies. Also, improper energy management can result in economic losses due to unbalanced energy control or inefficient systems. Home Energy Management Systems (HEMSs) have emerged as a promising solution to address these challenges. A well-designed HEMS enables users to achieve greater efficiency in managing their energy consumption, optimizing asset usage while ensuring cost savings and system reliability. This paper presents a comprehensive systematic review of optimization techniques applied to HEMS development between 2019 and 2024, focusing on key technical and computational factors influencing their advancement. The review categorizes optimization techniques into two main groups: conventional methods, emerging techniques, and machine learning methods. By analyzing recent developments, this study provides an integrated perspective on the evolving role of HEMSs in modern power systems, highlighting trends that enhance the efficiency and effectiveness of energy management in smart grids. Unifying taxonomy of HEMSs (2019–2024) and integrating mathematical, heuristic/metaheuristic, and ML/DRL approaches across horizons, controllability, and uncertainty, we assess algorithmic complexity versus tractability, benchmark comparative evidence (cost, PAR, runtime), and highlight deployment gaps (privacy, cybersecurity, AMI/HAN, and explainability), offering a novel synthesis for AI-enabled HEMS.
Suggested Citation
Abayomi A. Adebiyi & Mathew Habyarimana, 2025.
"Systematic Review of Optimization Methodologies for Smart Home Energy Management Systems,"
Energies, MDPI, vol. 18(19), pages 1-28, October.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:19:p:5262-:d:1764539
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5262-:d:1764539. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.