IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3923-d585751.html
   My bibliography  Save this article

Link between Technically Derived Energy Efficiency and Ecological Footprint: Empirical Evidence from the ASEAN Region

Author

Listed:
  • Dilawar Khan

    (Department of Economics, Kohat University of Science and Technology, Kohat 26000, Pakistan)

  • Muhammad Nouman

    (Department of Economics, Kohat University of Science and Technology, Kohat 26000, Pakistan)

  • József Popp

    (Department of Management, Faculty of Applied Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
    College of Business and Economics, University of Johannesburg, Johannesburg 2006, South Africa)

  • Muhammad Asif Khan

    (Department of Commerce, Faculty of Management Sciences, University of Kotli, Kotli 11100, Pakistan)

  • Faheem Ur Rehman

    (Laboratory of International and Regional Economics, Graduate School of Economics and Management, Ural Federal University, Prospekt Lenina, 51, Yekaterinburg, Sverdlovsk Oblast 620075, Russia
    Department of Economics, The University of Haripur, BIC, Haripur 22620, Pakistan)

  • Judit Oláh

    (College of Business and Economics, University of Johannesburg, Johannesburg 2006, South Africa
    Faculty of Economics and Business, University of Debrecen, 4032 Debrecen, Hungary)

Abstract

The sustainable environment has been a desired situation around the world for the last few decades. Environmental contaminations can be a consequence of various economic activities. Different socio-economic factors influence the environment positively or negatively. Many previous studies have resulted in the efficient allocation of inputs as an environment-friendly component. This paper investigates the effects of energy efficiency on ecological footprint in the ASEAN region using balanced panel data from 2001 to 2019. First, this paper technically derives the energy efficiency, using the stochastic frontier analysis (SFA) of the translog production type of single output and multiple inputs. Findings of the SFA show that the Philippines and Singapore have the highest energy efficiency (94%) and Laos has the lowest energy efficiency (85%) in the ASEAN region. The estimated average efficiency score of the ASEAN region was around 90%, ranging from 85% to 96%, indicating that there is still 10% room for improvement in energy efficiency. Second, this study employed the panel autoregressive distributed lag (ARDL) model to explore the short run and long run impact of technically derived energy efficiency on ecological footprint in the ASEAN region. Results of the panel ARDL model show that energy efficiency is a reducing factor of ecological footprint in the long run. Moreover, energy efficiency plays a significant role to control the environmental contaminations. In addition, results of this study also explored that urbanization is an increasing factor of ecological footprint, and investment in agriculture is also beneficial for the environment. Moreover, to obtain the directional nature of the associations between the ecological footprint and its independent variables, this paper has employed the paired-panel Granger causality test. The results of the paired wise panel Granger causality test also confirm that the energy efficiency, urbanization, and investment in agriculture cause ecological footprint. Finally, this study recommends that efficient utilization of energy resources as well as investment in agriculture are necessary for sustainable environment.

Suggested Citation

  • Dilawar Khan & Muhammad Nouman & József Popp & Muhammad Asif Khan & Faheem Ur Rehman & Judit Oláh, 2021. "Link between Technically Derived Energy Efficiency and Ecological Footprint: Empirical Evidence from the ASEAN Region," Energies, MDPI, vol. 14(13), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3923-:d:585751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madlener, R. & Alcott, B., 2009. "Energy rebound and economic growth: A review of the main issues and research needs," Energy, Elsevier, vol. 34(3), pages 370-376.
    2. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2010. "CO2 emissions, energy consumption and economic growth in BRIC countries," Energy Policy, Elsevier, vol. 38(12), pages 7850-7860, December.
    3. Antonio Carvalho, 2016. "Energy Efficiency in Transition Economies: A Stochastic Frontier Approach," CEERP Working Paper Series 004, Centre for Energy Economics Research and Policy, Heriot-Watt University.
    4. Emeka Nkoro & Aham Kelvin Uko, 2016. "Autoregressive Distributed Lag (ARDL) cointegration technique: application and interpretation," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 5(4), pages 1-3.
    5. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-598, October.
    6. Usman Akbar & József Popp & Hameed Khan & Muhammad Asif Khan & Judit Oláh, 2020. "Energy Efficiency in Transportation along with the Belt and Road Countries," Energies, MDPI, vol. 13(10), pages 1-20, May.
    7. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    8. Xiaobo Shen & Boqiang Lin, 2017. "Total Factor Energy Efficiency of China’s Industrial Sector: A Stochastic Frontier Analysis," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    9. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    10. Lans Bovenberg, A. & Smulders, Sjak, 1995. "Environmental quality and pollution-augmenting technological change in a two-sector endogenous growth model," Journal of Public Economics, Elsevier, vol. 57(3), pages 369-391, July.
    11. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    12. Elyas Abdulahi Mohamued & Masood Ahmed & Paula Pypłacz & Katarzyna Liczmańska-Kopcewicz & Muhammad Asif Khan, 2021. "Global Oil Price and Innovation for Sustainability: The Impact of R&D Spending, Oil Price and Oil Price Volatility on GHG Emissions," Energies, MDPI, vol. 14(6), pages 1-18, March.
    13. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    14. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    15. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    16. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. II," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 219-246, September.
    17. William Greene, 2004. "The behaviour of the maximum likelihood estimator of limited dependent variable models in the presence of fixed effects," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 98-119, June.
    18. Oja, Hannu, 1983. "Descriptive statistics for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 1(6), pages 327-332, October.
    19. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    20. Zhou, P. & Ang, B.W. & Zhou, D.Q., 2012. "Measuring economy-wide energy efficiency performance: A parametric frontier approach," Applied Energy, Elsevier, vol. 90(1), pages 196-200.
    21. Sari, Ramazan & Ewing, Bradley T. & Soytas, Ugur, 2008. "The relationship between disaggregate energy consumption and industrial production in the United States: An ARDL approach," Energy Economics, Elsevier, vol. 30(5), pages 2302-2313, September.
    22. Kijima, Masaaki & Nishide, Katsumasa & Ohyama, Atsuyuki, 2010. "Economic models for the environmental Kuznets curve: A survey," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1187-1201, July.
    23. Ferrara, Giancarlo & Vidoli, Francesco, 2017. "Semiparametric stochastic frontier models: A generalized additive model approach," European Journal of Operational Research, Elsevier, vol. 258(2), pages 761-777.
    24. Zuzana Virglerova & Muhammad Asif Khan & Raimonda Martinkute-Kauliene & Sandor Kovacs, 2020. "The Internationalization of SMEs in Central Europe and Its Impact on Their Methods of Risk Management," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 22(55), pages 792-792, August.
    25. Odhiambo, Nicholas M., 2009. "Finance-growth-poverty nexus in South Africa: A dynamic causality linkage," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 38(2), pages 320-325, March.
    26. Nagaoka, Sadao & Motohashi, Kazuyuki & Goto, Akira, 2010. "Patent Statistics as an Innovation Indicator," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1083-1127, Elsevier.
    27. Song, Ma-Lin & Zhang, Lin-Ling & Liu, Wei & Fisher, Ron, 2013. "Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data," Applied Energy, Elsevier, vol. 112(C), pages 1049-1055.
    28. Changhong Zhao & Haonan Zhang & Yurong Zeng & Fengyun Li & Yuanxin Liu & Chengju Qin & Jiahai Yuan, 2018. "Total-Factor Energy Efficiency in BRI Countries: An Estimation Based on Three-Stage DEA Model," Sustainability, MDPI, vol. 10(1), pages 1-15, January.
    29. Khan, Muhammad Asif & Khan, Muhammad Atif & Abdulahi, Mohamued Elyas & Liaqat, Idrees & Shah, Sayyed Sadaqat Hussain, 2019. "Institutional quality and financial development: The United States perspective," Journal of Multinational Financial Management, Elsevier, vol. 49(C), pages 67-80.
    30. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. I," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 125-140, June.
    31. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, December.
    32. Runsen Yuan & Chunling Li & Nian Li & Muhammad Asif Khan & Xiaoran Sun & Nosherwan Khaliq, 2021. "Can Mixed-Ownership Reform Drive the Green Transformation of SOEs?," Energies, MDPI, vol. 14(10), pages 1-25, May.
    33. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    34. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    35. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    36. Zainab Bibi & Dilawar Khan & Ihtisham ul Haq, 2021. "Technical and environmental efficiency of agriculture sector in South Asia: a stochastic frontier analysis approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9260-9279, June.
    37. Zuzana Virglerova & Francesca Conte & John Amoah & Maria Rita Massaro, 2020. "The Perception Of Legal Risk And Its Impact On The Business Of Smes," International Journal of Entrepreneurial Knowledge, Center for International Scientific Research of VSO and VSPP, vol. 8(2), pages 1-13, June.
    38. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    39. António Carvalho, 2018. "Energy efficiency in transition economies : A stochastic frontier approach," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 26(3), pages 553-578, July.
    40. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    41. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    42. Jie Wu & Beibei Xiong & Qingxian An & Jiasen Sun & Huaqing Wu, 2017. "Total-factor energy efficiency evaluation of Chinese industry by using two-stage DEA model with shared inputs," Annals of Operations Research, Springer, vol. 255(1), pages 257-276, August.
    43. Richmond, J, 1974. "Estimating the Efficiency of Production," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(2), pages 515-521, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Lei & Ozturk, Ilhan & Murshed, Muntasir & Abrorov, Sirojiddin & Alvarado, Rafael & Mahmood, Haider, 2023. "Environmental innovations, energy innovations, governance, and environmental sustainability: Evidence from South and Southeast Asian countries," Resources Policy, Elsevier, vol. 82(C).
    2. Wang, Shubin & Zhao, Erlong & Razzaq, Hafiz Kashif, 2022. "Dynamic role of renewable energy efficiency, natural resources, and climate technologies in realizing environmental sustainability: Implications for China," Renewable Energy, Elsevier, vol. 198(C), pages 1095-1104.
    3. Seemab Ahmad & Dilawar Khan & Róbert Magda, 2022. "Assessing the Influence of Financial Inclusion on Environmental Degradation in the ASEAN Region through the Panel PMG-ARDL Approach," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    4. Siming Zuo & Mingxia Zhu & Zhexiao Xu & Judit Oláh & Zoltan Lakner, 2021. "The Dynamic Impact of Natural Resource Rents, Financial Development, and Technological Innovations on Environmental Quality: Empirical Evidence from BRI Economies," IJERPH, MDPI, vol. 19(1), pages 1-17, December.
    5. Abdulsalam Altarhouni & Danbala Danju & Ahmed Samour, 2021. "Insurance Market Development, Energy Consumption, and Turkey’s CO 2 Emissions. New Perspectives from a Bootstrap ARDL Test," Energies, MDPI, vol. 14(23), pages 1-13, November.
    6. Dilawar Khan & Muhammad Nouman & Arif Ullah, 2023. "Assessing the impact of technological innovation on technically derived energy efficiency: a multivariate co-integration analysis of the agricultural sector in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3723-3745, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilawar Khan & Muhammad Nouman & Arif Ullah, 2023. "Assessing the impact of technological innovation on technically derived energy efficiency: a multivariate co-integration analysis of the agricultural sector in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3723-3745, April.
    2. Wen-Ling Hsiao & Jin-Li Hu & Chan Hsiao & Ming-Chung Chang, 2018. "Energy Efficiency of the Baltic Sea Countries: An Application of Stochastic Frontier Analysis," Energies, MDPI, vol. 12(1), pages 1-11, December.
    3. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    4. Qamruzzaman, Md & Jianguo, Wei, 2020. "The asymmetric relationship between financial development, trade openness, foreign capital flows, and renewable energy consumption: Fresh evidence from panel NARDL investigation," Renewable Energy, Elsevier, vol. 159(C), pages 827-842.
    5. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    6. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    7. Stephen M. Miller & Terrence M. Clauretie & Thomas M. Springer, 2006. "Economies Of Scale And Cost Efficiencies: A Panel‐Data Stochastic‐Frontier Analysis Of Real Estate Investment Trusts," Manchester School, University of Manchester, vol. 74(4), pages 483-499, July.
    8. Gangopadhyay, Partha & Jain, Siddharth & Bakry, Walid, 2022. "In search of a rational foundation for the massive IT boom in the Australian banking industry: Can the IT boom really drive relationship banking?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    9. Hongbo Liu & Shuanglu Liang, 2019. "The Nexus between Energy Consumption, Biodiversity, and Economic Growth in Lancang-Mekong Cooperation (LMC): Evidence from Cointegration and Granger Causality Tests," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    10. Armenia Androniceanu & Irina Georgescu, 2023. "The Impact of CO 2 Emissions and Energy Consumption on Economic Growth: A Panel Data Analysis," Energies, MDPI, vol. 16(3), pages 1-17, January.
    11. Santos, Carlos Filipe & Fuinhas, José Alberto & Marques, António Cardoso, 2014. "O nexus energia-crescimento e o nível da auto-suficiência na produção de petróleo: análise com macro painel [Energy-growth nexus and oil self-sufficiency: macro panel analysis]," MPRA Paper 57008, University Library of Munich, Germany.
    12. Sana Sardar & Dilawar Khan & Alam Khan & Róbert Magda, 2022. "The Influence of Aid for Trade on Human Development in South Asia," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    13. Gabriela Pérez Quesada, 2017. "Technical efficiency of dairy farms in Uruguay: a stochastic production frontier analysis," Documentos de Trabajo (working papers) 0517, Department of Economics - dECON.
    14. Parmeter, Christopher F., 2021. "Is it MOLS or COLS?," Efficiency Series Papers 2021/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    15. Alkhathlan, Khalid & Javid, Muhammad, 2013. "Energy consumption, carbon emissions and economic growth in Saudi Arabia: An aggregate and disaggregate analysis," Energy Policy, Elsevier, vol. 62(C), pages 1525-1532.
    16. Honma, Satoshi & Ushifusa, Yoshiaki & Okamura, Soyoka & Vandercamme, Lilu, 2023. "Measuring carbon emissions performance of Japan's metal industry: Energy inputs, agglomeration, and the potential for green recovery reduction," Resources Policy, Elsevier, vol. 82(C).
    17. Costantini, Valeria & Martini, Chiara, 2010. "The causality between energy consumption and economic growth: A multi-sectoral analysis using non-stationary cointegrated panel data," Energy Economics, Elsevier, vol. 32(3), pages 591-603, May.
    18. Muhammad Azam & Zia Ur Rehman & Yusnidah Ibrahim, 2022. "Causal nexus in industrialization, urbanization, trade openness, and carbon emissions: empirical evidence from OPEC economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13990-14010, December.
    19. Charfeddine, Lanouar & Ben Khediri, Karim, 2016. "Financial development and environmental quality in UAE: Cointegration with structural breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1322-1335.
    20. Ali, Adnan & Ramakrishnan, Suresh & Faisal,, 2022. "Financial development and natural resources. Is there a stock market resource curse?," Resources Policy, Elsevier, vol. 75(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3923-:d:585751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.