IDEAS home Printed from
   My bibliography  Save this article

The behaviour of the maximum likelihood estimator of limited dependent variable models in the presence of fixed effects


  • William Greene


The nonlinear fixed-effects model has two shortcomings, one practical and one methodological. The practical obstacle relates to the difficulty of computing the MLE of the coefficients of non-linear models with possibly thousands of dummy variable coefficients. In fact, in many models of interest to practitioners, computing the MLE of the parameters of fixed effects model is feasible even in panels with very large numbers of groups. The result, though not new, appears not to be well known. The more difficult, methodological issue is the incidental parameters problem that raises questions about the statistical properties of the ML estimator. There is relatively little empirical evidence on the behaviour of the MLE in the presence of fixed effects, and that which has been obtained has focused almost exclusively on binary choice models. In this paper, we use Monte Carlo methods to examine the small sample bias of the MLE in the tobit, truncated regression and Weibull survival models as well as the binary probit and logit and ordered probit discrete choice models. We find that the estimator in the continuous response models behaves quite differently from the familiar and oft cited results. Among our findings are: first, a widely accepted result that suggests that the probit estimator is actually relatively well behaved appears to be incorrect; second, the estimators of the slopes in the tobit model, unlike the probit and logit models that have been studied previously, appear to be largely unaffected by the incidental parameters problem, but a surprising result related to the disturbance variance estimator arises instead; third, lest one jumps to a conclusion that the finite sample bias is restricted to discrete choice models, we submit evidence on the truncated regression, which is yet unlike the tobit in that regard--it appears to be biased towards zero; fourth, we find in the Weibull model that the biases in a vector of coefficients need not be in the same direction; fifth, as apparently unexamined previously, the estimated asymptotic standard errors for the ML estimators appear uniformly to be downward biased when the model contains fixed effects. In sum, the finite sample behaviour of the fixed effects estimator is much more varied than the received literature would suggest. Copyright Royal Economic Socciety 2004

Suggested Citation

  • William Greene, 2004. "The behaviour of the maximum likelihood estimator of limited dependent variable models in the presence of fixed effects," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 98-119, June.
  • Handle: RePEc:ect:emjrnl:v:7:y:2004:i:1:p:98-119

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:7:y:2004:i:1:p:98-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.