IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0315571.html
   My bibliography  Save this article

Assessing potential reductions of agricultural GHG in countries with different land productivities: Long-term integrated efficiency in DEA hybrid meta-frontier model

Author

Listed:
  • Bazyli Czyżewski
  • Łukasz Kryszak

Abstract

Globally, the agricultural sector is responsible for the emission of ca. 9.3 gigatons of CO2 equivalent annually. A realistic efficiency model orientation, considering agricultural policy objectives in a given region of the world, is a crucial premise for finding the optimal path for achieving global targets of emission reduction. The main objective of this article is to assess agricultural greenhouse gases (GHG) potential reductions in countries with different farming productivity accounting for food security and economic performance of agricultural sector. The analysis focuses on non-radial slack that, theoretically, may be easily reduced by the improvement in available resource management. The DEA-based hybrid super-efficiency meta frontier model with undesirable output was employed, using the efficiency approach integrating three sustainability dimensions. The dataset consisted of data from 99 countries (2005–2018) divided into clusters. Several potential model orientations were tested and discussed with regard to agricultural policy objectives. It was found that by reducing slacks, agricultural emissions can be decreased by 0.74 Gt of CO2eq per year. Hence, removing only management inefficiencies would help achieve up to 80% of the global reduction targets in agriculture without a substantial technological change. However, the efficiency change component turned out to be mainly negative over the period studied; thus, a specific focus on agricultural policy is needed in terms of supporting farmers with a more rational use of their resources.

Suggested Citation

  • Bazyli Czyżewski & Łukasz Kryszak, 2025. "Assessing potential reductions of agricultural GHG in countries with different land productivities: Long-term integrated efficiency in DEA hybrid meta-frontier model," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-18, February.
  • Handle: RePEc:plo:pone00:0315571
    DOI: 10.1371/journal.pone.0315571
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315571
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0315571&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0315571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tim J. Coelli & D. S. Prasada Rao, 2005. "Total factor productivity growth in agriculture: a Malmquist index analysis of 93 countries, 1980–2000," Agricultural Economics, International Association of Agricultural Economists, vol. 32(s1), pages 115-134, January.
    2. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    3. Meryl Breton Richards & Eva Wollenberg & Detlef van Vuuren, 2018. "National contributions to climate change mitigation from agriculture: allocating a global target," Climate Policy, Taylor & Francis Journals, vol. 18(10), pages 1271-1285, November.
    4. Thomas Fellmann & Peter Witzke & Franz Weiss & Benjamin Van Doorslaer & Dusan Drabik & Ingo Huck & Guna Salputra & Torbjörn Jansson & Adrian Leip, 2018. "Major challenges of integrating agriculture into climate change mitigation policy frameworks," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 451-468, March.
    5. Dilawar Khan & Muhammad Nouman & József Popp & Muhammad Asif Khan & Faheem Ur Rehman & Judit Oláh, 2021. "Link between Technically Derived Energy Efficiency and Ecological Footprint: Empirical Evidence from the ASEAN Region," Energies, MDPI, vol. 14(13), pages 1-16, June.
    6. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    7. Lowder, Sarah K. & Skoet, Jakob & Raney, Terri, 2016. "The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide," World Development, Elsevier, vol. 87(C), pages 16-29.
    8. Ching-Cheng Lu & Liang-Chun Lu, 2019. "Evaluating the energy efficiency of European Union countries: The dynamic data envelopment analysis," Energy & Environment, , vol. 30(1), pages 27-43, February.
    9. François J Dessart & Jesús Barreiro-Hurlé & René van Bavel, 2019. "Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 46(3), pages 417-471.
    10. Zainab Bibi & Dilawar Khan & Ihtisham ul Haq, 2021. "Technical and environmental efficiency of agriculture sector in South Asia: a stochastic frontier analysis approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9260-9279, June.
    11. Xinru Han & Ping Xue & Ningning Zhang, 2021. "Impact of Grain Subsidy Reform on the Land Use of Smallholder Farms: Evidence from Huang-Huai-Hai Plain in China," Land, MDPI, vol. 10(9), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilawar Khan & Muhammad Nouman & Arif Ullah, 2023. "Assessing the impact of technological innovation on technically derived energy efficiency: a multivariate co-integration analysis of the agricultural sector in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3723-3745, April.
    2. Koiry, Subrata & Huang, Wei, 2023. "Do ecological protection approaches affect total factor productivity change of cropland production in Sweden?," Ecological Economics, Elsevier, vol. 209(C).
    3. Zuniga Gonzalez, Carlos Alberto, 2012. "Total factor productivity and Bio Economy effects," MPRA Paper 49355, University Library of Munich, Germany, revised 13 Nov 2012.
    4. Carlos Ludena, 2010. "Agricultural Productivity Growth, Efficiency Change and Technical Progress in Latin America and the Caribbean," Research Department Publications 4675, Inter-American Development Bank, Research Department.
    5. Athukorala, Wasantha & Lee, Boon L. & Wilson, Clevo & Fujii, Hidemichi & Managi, Shunsuke, 2023. "Measuring the impact of pesticide exposure on farmers’ health and farm productivity," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 851-862.
    6. Maziotis, Alexandros & Sala-Garrido, Ramon & Mocholi-Arce, Manuel & Molinos-Senante, Maria, 2023. "Cost and quality of service performance in the Chilean water industry: A comparison of stochastic approaches," Structural Change and Economic Dynamics, Elsevier, vol. 67(C), pages 211-219.
    7. Kearney, M. & O'Riordan, E.G. & Byrne, N. & Breen, J. & Crosson, P., 2023. "Mitigation of greenhouse gas emissions in pasture-based dairy-beef production systems," Agricultural Systems, Elsevier, vol. 211(C).
    8. Bazyli Czyżewski & Artur Prędki & Agnieszka Brelik, 2024. "Importance of women empowerment for eco‐efficiency of small farms in the context of other social factors: Building sustainable agriculture in Central and Eastern European countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(5), pages 5550-5566, October.
    9. Pietrzak, Michał & Ziętara, Wojciech, 2022. "Beyond the Black Box: Towards a Systems Theory of Farming Family and Family Farm," Problems of Agricultural Economics / Zagadnienia Ekonomiki Rolnej 320082, Institute of Agricultural and Food Economics - National Research Institute (IAFE-NRI).
    10. Arjomandi, Amir & Dakpo, K. Hervé & Seufert, Juergen Heinz, 2018. "Have Asian airlines caught up with European Airlines? A by-production efficiency analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 389-403.
    11. Chong Huang & Kedong Yin & Hongbo Guo & Benshuo Yang, 2022. "Regional Differences and Convergence of Inter-Provincial Green Total Factor Productivity in China under Technological Heterogeneity," IJERPH, MDPI, vol. 19(9), pages 1-20, May.
    12. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
    13. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2024. "Measuring productivity when technology is heterogeneous using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 67(5), pages 2175-2205, November.
    14. K Hervé Dakpo & Yann Desjeux & Philippe Jeanneaux & Laure Latruffe, 2017. "Productivity, technical efficiency and technological change in French agriculture during 2002-2014: A Färe-Primont index decomposition," Working Papers SMART 17-07, INRAE UMR SMART.
    15. Sipilainen, Timo & Kuosmanen, Timo & Kumbhakar, Subal C., 2008. "Measuring productivity differentials – An application to milk production in Nordic countries," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44277, European Association of Agricultural Economists.
    16. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    17. Khatri-Chhetri, Arun & Sapkota, Tek B. & Maharjan, Sofina & Cheerakkollil Konath, Noufa & Shirsath, Paresh, 2023. "Agricultural emissions reduction potential by improving technical efficiency in crop production," Agricultural Systems, Elsevier, vol. 207(C).
    18. Kounetas, Kostas & Napolitano, Oreste, 2015. "Too much EMU? An investigation of technology gaps," MPRA Paper 67600, University Library of Munich, Germany.
    19. Luong, Tuan, 2023. "Network resilience and risk attitudes: Evidence from Vietnamese Vegetable Farming," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334556, Agricultural Economics Society - AES.
    20. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.