IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v207y2023ics0308521x23000252.html
   My bibliography  Save this article

Agricultural emissions reduction potential by improving technical efficiency in crop production

Author

Listed:
  • Khatri-Chhetri, Arun
  • Sapkota, Tek B.
  • Maharjan, Sofina
  • Cheerakkollil Konath, Noufa
  • Shirsath, Paresh

Abstract

Global and national agricultural development policies normally tend to focus more on enhancing farm productivity through technological changes than on better use of existing technologies. The role of improving technical efficiency in greenhouse gas (GHG) emissions reduction from crop production is the least explored area in the agricultural sector. But improving technical efficiency is necessary in the context of the limited availability of existing natural resources (particularly land and water) and the need for GHG emission reduction from the agriculture sector. Technical efficiency gains in the production process are linked with the amount of input used nd the cost of production that determines both economic and environmental gains from the better use of existing technologies.

Suggested Citation

  • Khatri-Chhetri, Arun & Sapkota, Tek B. & Maharjan, Sofina & Cheerakkollil Konath, Noufa & Shirsath, Paresh, 2023. "Agricultural emissions reduction potential by improving technical efficiency in crop production," Agricultural Systems, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:agisys:v:207:y:2023:i:c:s0308521x23000252
    DOI: 10.1016/j.agsy.2023.103620
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X23000252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2023.103620?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henderson, B. & Godde, C. & Medina-Hidalgo, D. & van Wijk, M. & Silvestri, S. & Douxchamps, S. & Stephenson, E. & Power, B. & Rigolot, C. & Cacho, O. & Herrero, M., 2016. "Closing system-wide yield gaps to increase food production and mitigate GHGs among mixed crop–livestock smallholders in Sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 143(C), pages 106-113.
    2. Thanh Tam Ho & Koji Shimada, 2019. "The Effects of Climate Smart Agriculture and Climate Change Adaptation on the Technical Efficiency of Rice Farming—An Empirical Study in the Mekong Delta of Vietnam," Agriculture, MDPI, vol. 9(5), pages 1-20, May.
    3. Ludeña, Carlos E., 2010. "Agricultural Productivity Growth, Efficiency Change and Technical Progress in Latin America and the Caribbean," IDB Publications (Working Papers) 1806, Inter-American Development Bank.
    4. Meryl Breton Richards & Eva Wollenberg & Detlef van Vuuren, 2018. "National contributions to climate change mitigation from agriculture: allocating a global target," Climate Policy, Taylor & Francis Journals, vol. 18(10), pages 1271-1285, November.
    5. Dave S. Reay & Eric A. Davidson & Keith A. Smith & Pete Smith & Jerry M. Melillo & Frank Dentener & Paul J. Crutzen, 2012. "Global agriculture and nitrous oxide emissions," Nature Climate Change, Nature, vol. 2(6), pages 410-416, June.
    6. Valeria Piñeiro & Joaquín Arias & Jochen Dürr & Pablo Elverdin & Ana María Ibáñez & Alison Kinengyere & Cristian Morales Opazo & Nkechi Owoo & Jessica R. Page & Steven D. Prager & Maximo Torero, 2020. "A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes," Nature Sustainability, Nature, vol. 3(10), pages 809-820, October.
    7. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    8. Kumbhakar, Subal C & Ghosh, Soumendra & McGuckin, J Thomas, 1991. "A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 279-286, July.
    9. Khatri-Chhetri, Arun & Pant, Anjali & Aggarwal, Pramod K. & Vasireddy, Vijya Vardhan & Yadav, Akhilesh, 2019. "Stakeholders prioritization of climate-smart agriculture interventions: Evaluation of a framework," Agricultural Systems, Elsevier, vol. 174(C), pages 23-31.
    10. Battese, George E., 1992. "Frontier production functions and technical efficiency: a survey of empirical applications in agricultural economics," Agricultural Economics, Blackwell, vol. 7(3-4), pages 185-208, October.
    11. Carlos Ludena, 2010. "Agricultural Productivity Growth, Efficiency Change and Technical Progress in Latin America and the Caribbean," Research Department Publications 4675, Inter-American Development Bank, Research Department.
    12. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    13. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    14. W. Amelung & D. Bossio & W. Vries & I. Kögel-Knabner & J. Lehmann & R. Amundson & R. Bol & C. Collins & R. Lal & J. Leifeld & B. Minasny & G. Pan & K. Paustian & C. Rumpel & J. Sanderman & J. W. Groen, 2020. "Towards a global-scale soil climate mitigation strategy," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    15. Dario Caro & Steven Davis & Simone Bastianoni & Ken Caldeira, 2014. "Global and regional trends in greenhouse gas emissions from livestock," Climatic Change, Springer, vol. 126(1), pages 203-216, September.
    16. Kees Jan van Groenigen & Chris van Kessel & Bruce A. Hungate, 2013. "Increased greenhouse-gas intensity of rice production under future atmospheric conditions," Nature Climate Change, Nature, vol. 3(3), pages 288-291, March.
    17. Feliciano, Diana & Nayak, Dali Rani & Vetter, Sylvia Helga & Hillier, Jon, 2017. "CCAFS-MOT - A tool for farmers, extension services and policy-advisors to identify mitigation options for agriculture," Agricultural Systems, Elsevier, vol. 154(C), pages 100-111.
    18. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production," Energy, Elsevier, vol. 58(C), pages 588-593.
    19. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    20. Arti Bhatia & Niveta Jain & Himanshu Pathak, 2013. "Methane and nitrous oxide emissions from Indian rice paddies, agricultural soils and crop residue burning," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 3(3), pages 196-211, June.
    21. Piotr Gołasa & Marcin Wysokiński & Wioletta Bieńkowska-Gołasa & Piotr Gradziuk & Magdalena Golonko & Barbara Gradziuk & Agnieszka Siedlecka & Arkadiusz Gromada, 2021. "Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used," Energies, MDPI, vol. 14(13), pages 1-20, June.
    22. Suresh K. Kakraliya & Hanuman S. Jat & Tek B. Sapkota & Ishwar Singh & Manish Kakraliya & Manoj K. Gora & Parbodh C. Sharma & Mangi L. Jat, 2021. "Effect of Climate-Smart Agriculture Practices on Climate Change Adaptation, Greenhouse Gas Mitigation and Economic Efficiency of Rice-Wheat System in India," Agriculture, MDPI, vol. 11(12), pages 1-20, December.
    23. Hanqin Tian & Rongting Xu & Josep G. Canadell & Rona L. Thompson & Wilfried Winiwarter & Parvadha Suntharalingam & Eric A. Davidson & Philippe Ciais & Robert B. Jackson & Greet Janssens-Maenhout & Mic, 2020. "A comprehensive quantification of global nitrous oxide sources and sinks," Nature, Nature, vol. 586(7828), pages 248-256, October.
    24. Athanasios Balafoutis & Bert Beck & Spyros Fountas & Jurgen Vangeyte & Tamme Van der Wal & Iria Soto & Manuel Gómez-Barbero & Andrew Barnes & Vera Eory, 2017. "Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    25. Lowder, Sarah K. & Skoet, Jakob & Raney, Terri, 2016. "The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide," World Development, Elsevier, vol. 87(C), pages 16-29.
    26. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    27. Vincent Ricciardi & Zia Mehrabi & Hannah Wittman & Dana James & Navin Ramankutty, 2021. "Higher yields and more biodiversity on smaller farms," Nature Sustainability, Nature, vol. 4(7), pages 651-657, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhehibi, Boubaker & Lachaal, Lassaad & Elloumi, Mohamed & Messaoud, Emna B., 2007. "Measurement and Sources of Technical Inefficiency in the Tunisian Citrus Growing Sector," 103rd Seminar, April 23-25, 2007, Barcelona, Spain 9391, European Association of Agricultural Economists.
    2. Coelli, Tim J. & Battese, George E., 1996. "Identification Of Factors Which Influence The Technical Inefficiency Of Indian Farmers," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 40(2), pages 1-26, August.
    3. Olli-Pekka Kuusela & Maria S. Bowman & Gregory S. Amacher & Richard B. Howarth & Nadine T. Laporte, 2020. "Does infrastructure and resource access matter for technical efficiency? An empirical analysis of fishing and fuelwood collection in Mozambique," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 1811-1837, March.
    4. Madau, Fabio A., 2005. "Technical Efficiency in Organic Farming: An Application on Italian Cereal Farms Using a Parametric Approach," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24545, European Association of Agricultural Economists.
    5. Illukpitiya, Prabodh & Yanagida, John F., 2010. "Farming vs forests: Trade-off between agriculture and the extraction of non-timber forest products," Ecological Economics, Elsevier, vol. 69(10), pages 1952-1963, August.
    6. Sherlund, Shane M. & Barrett, Christopher B. & Adesina, Akinwumi A., 2002. "Smallholder technical efficiency controlling for environmental production conditions," Journal of Development Economics, Elsevier, vol. 69(1), pages 85-101, October.
    7. Bekele, Abate & Viljoen, Machiel F. & Ayele, Gezahegn & Ali, Syed, 2009. "Effect of Farm Size on Efficiency of Wheat Production in Moretna-Jirru District in Central Ethiopia," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 64(1), pages 1-11.
    8. Tim J. Coelli, 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 219-245, December.
    9. Dhehibi, Boubaker & Telleria, Roberto & Aw-Hassan, Aden & Hatem Mohamed, Saad & Ziadat, Feras & Wu, Weicheng, 2015. "Impacts of Soil Salinity on the Productivity of Al-Musayyeb Small Farms in Iraq: An Examination of Technical, Economic, and Allocative, Efficiency," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 16(2), pages 1-14.
    10. Oliveira, M.M. & Camanho, A.S. & Gaspar, M.B., 2015. "The phycotoxins׳ impact on the revenue of the Portuguese artisanal dredge fleet," Marine Policy, Elsevier, vol. 52(C), pages 45-51.
    11. Zahidul Islam, K.M. & Sumelius, John & Bäckman, Stefan, 2012. "Do differences in technical efficiency explain the adoption rate of HYV rice? Evidence from Bangladesh," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 13(1), pages 1-18.
    12. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    13. Carlo Altomonte & Marcella Nicolini & Armando Rungi & Laura Ogliari, 2010. "Assessing the Competitive Behaviour of Firms in the Single Market: A Micro-based Approach," European Economy - Economic Papers 2008 - 2015 409, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    14. Lachaal, Lassaad & Chebil, Ali & Dhehibi, Boubaker, 2004. "A Panel Data Approach to the Measurement of Technical Efficiency and its Determinants: Some Evidence from the Tunisian Agro-Food Industry," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 5(1), pages 1-9, January.
    15. Trindade, Federico J., 2012. "Is there a Slowdown in Agricultural Productivity Growth in South America?," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126915, International Association of Agricultural Economists.
    16. Seyoum, E. T. & Battese, G. E. & Fleming, E. M., 1998. "Technical efficiency and productivity of maize producers in eastern Ethiopia: a study of farmers within and outside the Sasakawa-Global 2000 project," Agricultural Economics, Blackwell, vol. 19(3), pages 341-348, December.
    17. Kashiwagi, Kenichi & Mtimet, Nadhem & Zaibet, Lokman & Nagaki, Masakazu, 2010. "Technical efficiency of olive oil manufacturing and efficacy of modernization programme in Tunisia," 2010 AAAE Third Conference/AEASA 48th Conference, September 19-23, 2010, Cape Town, South Africa 96195, African Association of Agricultural Economists (AAAE).
    18. Gebregziabher, Gebrehaweria & Namara, Regassa E. & Holden, Stein, 2012. "Technical Efficiency of Irrigated and Rain-Fed Smallholder Agriculture in Tigray, Ethiopia: A Comparative Stochastic Frontier Production Function Analysis," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 51(3), pages 1-24, August.
    19. Fenn, Paul & Vencappa, Dev & Diacon, Stephen & Klumpes, Paul & O'Brien, Chris, 2008. "Market structure and the efficiency of European insurance companies: A stochastic frontier analysis," Journal of Banking & Finance, Elsevier, vol. 32(1), pages 86-100, January.
    20. Asefa, Shumet, 2011. "Analysis of technical efficiency of crop producing smallholder farmers in Tigray,Ethiopia," MPRA Paper 40461, University Library of Munich, Germany, revised 19 Sep 2012.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:207:y:2023:i:c:s0308521x23000252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.