IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v211y2023ics0308521x23001531.html
   My bibliography  Save this article

Mitigation of greenhouse gas emissions in pasture-based dairy-beef production systems

Author

Listed:
  • Kearney, M.
  • O'Riordan, E.G.
  • Byrne, N.
  • Breen, J.
  • Crosson, P.

Abstract

Agriculture and food systems contribute significantly to climate change. Greenhouse gas (GHG) emissions intensity from beef production are high when compared to other livestock production systems and, therefore, mitigation of these emissions is urgently required. In many countries dairy-beef is making a large and growing contribution to total beef output thereby reducing net emissions given the lower emissions intensity of beef originating from the dairy herd when compared to specialized beef-cow systems. GHG emissions from dairy-beef systems can be further reduced by adopting best practice and mitigation technologies.

Suggested Citation

  • Kearney, M. & O'Riordan, E.G. & Byrne, N. & Breen, J. & Crosson, P., 2023. "Mitigation of greenhouse gas emissions in pasture-based dairy-beef production systems," Agricultural Systems, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:agisys:v:211:y:2023:i:c:s0308521x23001531
    DOI: 10.1016/j.agsy.2023.103748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X23001531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2023.103748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veysset, P. & Lherm, M. & Bébin, D., 2010. "Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: Model-based analysis and forecasts," Agricultural Systems, Elsevier, vol. 103(1), pages 41-50, January.
    2. Kearney, M. & O'Riordan, E.G. & McGee, M. & Breen, J. & Crosson, P., 2022. "Farm-level modelling of bioeconomic, greenhouse gas emissions and feed-food performance of pasture-based dairy-beef systems," Agricultural Systems, Elsevier, vol. 203(C).
    3. Uwe Schneider & Bruce McCarl, 2003. "Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 291-312, April.
    4. Röös, Elin & Patel, Mikaela & Spångberg, Johanna & Carlsson, Georg & Rydhmer, Lotta, 2016. "Limiting livestock production to pasture and by-products in a search for sustainable diets," Food Policy, Elsevier, vol. 58(C), pages 1-13.
    5. McGee, M. & Moloney, A.P. & O'Riordan, E.G. & Regan, M. & Lenehan, C. & Kelly, A.K. & Crosson, P., 2023. "Pasture-finishing of late-maturing bulls or steers in a suckler calf-to-beef system: Animal production, meat quality, economics, greenhouse gas emissions and human-edible food-feed efficiency," Agricultural Systems, Elsevier, vol. 209(C).
    6. Ashfield, A. & Crosson, P. & Wallace, M., 2013. "Simulation modelling of temperate grassland based dairy calf to beef production systems," Agricultural Systems, Elsevier, vol. 115(C), pages 41-50.
    7. Murphy, Brian & Crosson, Paul & Kelly, Alan K. & Prendiville, Robert, 2017. "An economic and greenhouse gas emissions evaluation of pasture-based dairy calf-to-beef production systems," Agricultural Systems, Elsevier, vol. 154(C), pages 124-132.
    8. Ashfield, A. & Wallace, M. & Crosson, P., 2014. "Economic comparison of pasture based dairy calf-to-beef production systems under temperate grassland conditions," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 3(3), pages 1-12.
    9. Samsonstuen, Stine & Åby, Bente A. & Crosson, Paul & Beauchemin, Karen A. & Bonesmo, Helge & Aass, Laila, 2019. "Farm scale modelling of greenhouse gas emissions from semi-intensive suckler cow beef production," Agricultural Systems, Elsevier, vol. 176(C).
    10. Thomas Fellmann & Peter Witzke & Franz Weiss & Benjamin Van Doorslaer & Dusan Drabik & Ingo Huck & Guna Salputra & Torbjörn Jansson & Adrian Leip, 2018. "Major challenges of integrating agriculture into climate change mitigation policy frameworks," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 451-468, March.
    11. McGee, M. & Lenehan, C. & Crosson, P. & O'Riordan, E.G. & Kelly, A.K. & Moran, L. & Moloney, A.P., 2022. "Performance, meat quality, profitability, and greenhouse gas emissions of suckler bulls from pasture-based compared to an indoor high-concentrate weanling-to-beef finishing system," Agricultural Systems, Elsevier, vol. 198(C).
    12. Heflin, K.R. & Parker, D.B. & Marek, G.W. & Auvermann, B.W. & Marek, T.H., 2019. "Greenhouse-gas emissions of beef finishing systems in the Southern High Plains," Agricultural Systems, Elsevier, vol. 176(C).
    13. Herron, Jonathan & Curran, Thomas P. & Moloney, Aidan P. & O'Brien, Donal, 2019. "Whole farm modelling the effect of grass silage harvest date and nitrogen fertiliser rate on nitrous oxide emissions from grass-based suckler to beef farming systems," Agricultural Systems, Elsevier, vol. 175(C), pages 66-78.
    14. Tzemi, Domna & Breen, James, 2019. "Reducing greenhouse gas emissions through the use of urease inhibitors: A farm level analysis," Ecological Modelling, Elsevier, vol. 394(C), pages 18-26.
    15. van Selm, Benjamin & de Boer, Imke J.M. & Ledgard, Stewart F. & van Middelaar, Corina E., 2021. "Reducing greenhouse gas emissions of New Zealand beef through better integration of dairy and beef production," Agricultural Systems, Elsevier, vol. 186(C).
    16. Casey, J.W. & Holden, N.M., 2006. "Quantification of GHG emissions from sucker-beef production in Ireland," Agricultural Systems, Elsevier, vol. 90(1-3), pages 79-98, October.
    17. Taylor, R.F. & McGee, M. & Kelly, A.K. & Crosson, P., 2020. "Bioeconomic and greenhouse gas emissions modelling of the factors influencing technical efficiency of temperate grassland-based suckler calf-to-beef production systems," Agricultural Systems, Elsevier, vol. 183(C).
    18. François J Dessart & Jesús Barreiro-Hurlé & René van Bavel, 2019. "Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 46(3), pages 417-471.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kearney, M. & O'Riordan, E.G. & McGee, M. & Breen, J. & Crosson, P., 2022. "Farm-level modelling of bioeconomic, greenhouse gas emissions and feed-food performance of pasture-based dairy-beef systems," Agricultural Systems, Elsevier, vol. 203(C).
    2. McGee, M. & Moloney, A.P. & O'Riordan, E.G. & Regan, M. & Lenehan, C. & Kelly, A.K. & Crosson, P., 2023. "Pasture-finishing of late-maturing bulls or steers in a suckler calf-to-beef system: Animal production, meat quality, economics, greenhouse gas emissions and human-edible food-feed efficiency," Agricultural Systems, Elsevier, vol. 209(C).
    3. McGee, M. & Lenehan, C. & Crosson, P. & O'Riordan, E.G. & Kelly, A.K. & Moran, L. & Moloney, A.P., 2022. "Performance, meat quality, profitability, and greenhouse gas emissions of suckler bulls from pasture-based compared to an indoor high-concentrate weanling-to-beef finishing system," Agricultural Systems, Elsevier, vol. 198(C).
    4. Raymond L. Desjardins & Devon E. Worth & Xavier P. C. Vergé & Dominique Maxime & Jim Dyer & Darrel Cerkowniak, 2012. "Carbon Footprint of Beef Cattle," Sustainability, MDPI, vol. 4(12), pages 1-23, December.
    5. María I. Nieto & Olivia Barrantes & Liliana Privitello & Ramón Reiné, 2018. "Greenhouse Gas Emissions from Beef Grazing Systems in Semi-Arid Rangelands of Central Argentina," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    6. Addisu H. Addis & Hugh T. Blair & Paul R. Kenyon & Stephen T. Morris & Nicola M. Schreurs, 2021. "Optimization of Profit for Pasture-Based Beef Cattle and Sheep Farming Using Linear Programming: Young Beef Cattle Production in New Zealand," Agriculture, MDPI, vol. 11(9), pages 1-14, September.
    7. Andreas Tsakiridis & Michael Wallace & James Breen & Cathal O'Donoghue & Kevin Hanrahan, 2021. "Beef quality assurance schemes: Can they improve farm economic performance?," Agribusiness, John Wiley & Sons, Ltd., vol. 37(3), pages 451-471, July.
    8. Briner, Simon & Hartmann, Michael & Lehmann, Bernard, 2011. "Economic Assessment of Agroforestry Systems Compared to Other Greenhouse Gas Mitigation Options for Suckler Cow Farming," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114271, European Association of Agricultural Economists.
    9. Kamilaris, C. & Dewhurst, R.J. & Vosough Ahmadi, B. & Crosson, P. & Alexander, P., 2020. "A bio-economic model for cost analysis of alternative management strategies in beef finishing systems," Agricultural Systems, Elsevier, vol. 180(C).
    10. Johanna Ruett & Lena Hennes & Jens Teubler & Boris Braun, 2022. "How Compatible Are Western European Dietary Patterns to Climate Targets? Accounting for Uncertainty of Life Cycle Assessments by Applying a Probabilistic Approach," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    11. Kreft, Cordelia & Huber, Robert & Wuepper, David & Finger, Robert, 2021. "The role of non-cognitive skills in farmers' adoption of climate change mitigation measures," Ecological Economics, Elsevier, vol. 189(C).
    12. Simon Briner & Michael Hartmann & Robert Finger & Bernard Lehmann, 2012. "Greenhouse gas mitigation and offset options for suckler cow farms: an economic comparison for the Swiss case," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(4), pages 337-355, April.
    13. Czajkowski, Mikołaj & Zagórska, Katarzyna & Letki, Natalia & Tryjanowski, Piotr & Wąs, Adam, 2021. "Drivers of farmers’ willingness to adopt extensive farming practices in a globally important bird area," Land Use Policy, Elsevier, vol. 107(C).
    14. Mercedes Rodríguez & José Antonio Camacho, 2023. "The importance of agriculture and rural areas for the future in the European Union: An exploration of public opinion," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(10), pages 394-403.
    15. Jacinto F. Fabiosa & John C. Beghin & Fengxia Dong & JAmani Elobeid & Simla Tokgoz & Tun-Hsiang Yu, 2010. "Land Allocation Effects of the Global Ethanol Surge: Predictions from the International FAPRI Model," Land Economics, University of Wisconsin Press, vol. 86(4), pages 687-706.
    16. Mingyue Li & Jingjing Wang & Kai Chen & Lianbei Wu, 2020. "Willingness and Behaviors of Farmers’ Green Disposal of Pesticide Packaging Waste in Henan, China: A Perceived Value Formation Mechanism Perspective," IJERPH, MDPI, vol. 17(11), pages 1-18, May.
    17. Maung, Thein A. & McCarl, Bruce A., 2013. "Economic factors influencing potential use of cellulosic crop residues for electricity generation," Energy, Elsevier, vol. 56(C), pages 81-91.
    18. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    19. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    20. Qianchun Dai & Kequn Cheng, 2022. "What Drives the Adoption of Agricultural Green Production Technologies? An Extension of TAM in Agriculture," Sustainability, MDPI, vol. 14(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:211:y:2023:i:c:s0308521x23001531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.