IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v4y2012i12p3279-3301d21912.html
   My bibliography  Save this article

Carbon Footprint of Beef Cattle

Author

Listed:
  • Raymond L. Desjardins

    (Science and Technology Branch, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada)

  • Devon E. Worth

    (Science and Technology Branch, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada)

  • Xavier P. C. Vergé

    (Private Consultant, Ottawa, ON, K2A 1G6, Canada)

  • Dominique Maxime

    (Centre Interuniversitaire de Recherche sur le Cycle de Vie des Produits, Procédés et Services (CIRAIG), 2500, Chemin Polytechnique, Montréal, QC, H3T 1J4, Canada)

  • Jim Dyer

    (Private Consultant, Cambridge, ON, N3H 3Z9, Canada)

  • Darrel Cerkowniak

    (Science and Technology Branch, Agriculture and Agri-Food Canada, 51 Campus Drive, 5C74 Agriculture Building, Saskatoon, Saskatchewan, S7N 5A8, Canada)

Abstract

The carbon footprint of beef cattle is presented for Canada, The United States, The European Union, Australia and Brazil. The values ranged between 8 and 22 kg CO 2 e per kg of live weight (LW) depending on the type of farming system, the location, the year, the type of management practices, the allocation, as well as the boundaries of the study. Substantial reductions have been observed for most of these countries in the last thirty years. For instance, in Canada the mean carbon footprint of beef cattle at the exit gate of the farm decreased from 18.2 kg CO 2 e per kg LW in 1981 to 9.5 kg CO 2 e per kg LW in 2006 mainly because of improved genetics, better diets, and more sustainable land management practices. Cattle production results in products other than meat, such as hides, offal and products for rendering plants; hence the environmental burden must be distributed between these useful products. In order to do this, the cattle carbon footprint needs to be reported in kg of CO 2 e per kg of product. For example, in Canada in 2006, on a mass basis, the carbon footprint of cattle by-products at the exit gate of the slaughterhouse was 12.9 kg CO 2 e per kg of product. Based on an economic allocation, the carbon footprints of meat (primal cuts), hide, offal and fat, bones and other products for rendering were 19.6, 12.3, 7 and 2 kg CO 2 e per kg of product, respectively.

Suggested Citation

  • Raymond L. Desjardins & Devon E. Worth & Xavier P. C. Vergé & Dominique Maxime & Jim Dyer & Darrel Cerkowniak, 2012. "Carbon Footprint of Beef Cattle," Sustainability, MDPI, vol. 4(12), pages 1-23, December.
  • Handle: RePEc:gam:jsusta:v:4:y:2012:i:12:p:3279-3301:d:21912
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/4/12/3279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/4/12/3279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Casey, J.W. & Holden, N.M., 2005. "Analysis of greenhouse gas emissions from the average Irish milk production system," Agricultural Systems, Elsevier, vol. 86(1), pages 97-114, October.
    2. Beauchemin, Karen A. & Henry Janzen, H. & Little, Shannan M. & McAllister, Tim A. & McGinn, Sean M., 2010. "Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study," Agricultural Systems, Elsevier, vol. 103(6), pages 371-379, July.
    3. Verge, X.P.C. & Dyer, J.A. & Desjardins, R.L. & Worth, D., 2007. "Greenhouse gas emissions from the Canadian dairy industry in 2001," Agricultural Systems, Elsevier, vol. 94(3), pages 683-693, June.
    4. Casey, J.W. & Holden, N.M., 2006. "Quantification of GHG emissions from sucker-beef production in Ireland," Agricultural Systems, Elsevier, vol. 90(1-3), pages 79-98, October.
    5. Pelletier, Nathan & Pirog, Rich & Rasmussen, Rebecca, 2010. "Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States," Agricultural Systems, Elsevier, vol. 103(6), pages 380-389, July.
    6. Veysset, P. & Lherm, M. & Bébin, D., 2010. "Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: Model-based analysis and forecasts," Agricultural Systems, Elsevier, vol. 103(1), pages 41-50, January.
    7. Bradley G. Ridoutt & Peerasak Sanguansri & Gregory S. Harper, 2011. "Comparing Carbon and Water Footprints for Beef Cattle Production in Southern Australia," Sustainability, MDPI, vol. 3(12), pages 1-13, December.
    8. Pelletier, N., 2008. "Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions," Agricultural Systems, Elsevier, vol. 98(2), pages 67-73, September.
    9. Vergé, X.P.C. & Dyer, J.A. & Desjardins, R.L. & Worth, D., 2008. "Greenhouse gas emissions from the Canadian beef industry," Agricultural Systems, Elsevier, vol. 98(2), pages 126-134, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyland, J.J. & Styles, D. & Jones, D.L. & Williams, A.P., 2016. "Improving livestock production efficiencies presents a major opportunity to reduce sectoral greenhouse gas emissions," Agricultural Systems, Elsevier, vol. 147(C), pages 123-131.
    2. Rasadhika Sharma & Trung Thanh Nguyen & Ulrike Grote, 2018. "Changing Consumption Patterns—Drivers and the Environmental Impact," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    3. Jacob Hawkins & Chunbo Ma & Steven Schilizzi & Fan Zhang, 2018. "China's changing diet and its impacts on greenhouse gas emissions: an index decomposition analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), pages 45-64, January.
    4. Pedro Henrique Presumido & Fernando Sousa & Artur Gonçalves & Tatiane Cristina Dal Bosco & Manuel Feliciano, 2018. "Environmental Impacts of the Beef Production Chain in the Northeast of Portugal Using Life Cycle Assessment," Agriculture, MDPI, vol. 8(10), pages 1-19, October.
    5. Stanley, Paige L. & Rowntree, Jason E. & Beede, David K. & DeLonge, Marcia S. & Hamm, Michael W., 2018. "Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems," Agricultural Systems, Elsevier, vol. 162(C), pages 249-258.
    6. Li, Xiaogu & Jensen, Kimberly L. & Clark, Christopher D. & Lambert, Dayton M., 2016. "Consumer willingness to pay for beef grown using climate friendly production practices," Food Policy, Elsevier, vol. 64(C), pages 93-106.
    7. Marques, J.G.O. & de Oliveira Silva, R. & Barioni, L.G. & Hall, J.A.J. & Fossaert, C. & Tedeschi, L.O. & Garcia-Launay, F. & Moran, D., 2022. "Evaluating environmental and economic trade-offs in cattle feed strategies using multiobjective optimization," Agricultural Systems, Elsevier, vol. 195(C).
    8. Singh, Akshit & Mishra, Nishikant & Ali, Syed Imran & Shukla, Nagesh & Shankar, Ravi, 2015. "Cloud computing technology: Reducing carbon footprint in beef supply chain," International Journal of Production Economics, Elsevier, vol. 164(C), pages 462-471.
    9. Elina Lehikoinen & Tuure Parviainen & Juha Helenius & Mika Jalava & Arto O. Salonen & Matti Kummu, 2019. "Cattle Production for Exports in Water-Abundant Areas: The Case of Finland," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    10. Paola Caputo & Chiara Ducoli & Matteo Clementi, 2014. "Strategies and Tools for Eco-Efficient Local Food Supply Scenarios," Sustainability, MDPI, vol. 6(2), pages 1-21, January.
    11. Shen Wang & Guohe Huang & Yurui Fan, 2018. "A Multistage Distribution-Generation Planning Model for Clean Power Generation under Multiple Uncertainties—A Case Study of Urumqi, China," Sustainability, MDPI, vol. 10(9), pages 1-30, September.
    12. Shiferaw Feleke & Steven Michael Cole & Haruna Sekabira & Rousseau Djouaka & Victor Manyong, 2021. "Circular Bioeconomy Research for Development in Sub-Saharan Africa: Innovations, Gaps, and Actions," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    13. James A. Dyer & Raymond L. Desjardins & Devon E. Worth & Xavier P.C. Vergé, 2020. "Potential Role for Consumers to Reduce Canadian Agricultural GHG Emissions by Diversifying Animal Protein Sources," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    14. Bieńkowski, Jerzy & Holka, Małgorzata & Dąbrowicz, Radosław & Jankowiak, Janusz, 2018. "Carbon Footprint of Beef Cattle in a Conventional Production System: a Case Study of a Large-Area Farming Enterprise in the Wielkopolska Region," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 18(33, Part ), September.
    15. Jessica Gilreath & Tryon Wickersham & Jason Sawyer, 2022. "Comparison of Methodologies Used to Estimate Enteric Methane Emissions and Warming Impact from 1920 to 2020 for U.S. Beef Production," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    16. Tianyi Cai & Degang Yang & Xinhuan Zhang & Fuqiang Xia & Rongwei Wu, 2018. "Study on the Vertical Linkage of Greenhouse Gas Emission Intensity Change of the Animal Husbandry Sector between China and Its Provinces," Sustainability, MDPI, vol. 10(7), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. White, Robin R. & Brady, Michael & Capper, Judith L. & Johnson, Kristen A., 2014. "Optimizing diet and pasture management to improve sustainability of U.S. beef production," Agricultural Systems, Elsevier, vol. 130(C), pages 1-12.
    2. María I. Nieto & Olivia Barrantes & Liliana Privitello & Ramón Reiné, 2018. "Greenhouse Gas Emissions from Beef Grazing Systems in Semi-Arid Rangelands of Central Argentina," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    3. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    4. Morel, Kevin & Farrié, Jean-Pierre & Renon, Julien & Manneville, Vincent & Agabriel, Jacques & Devun, Jean, 2016. "Environmental impacts of cow-calf beef systems with contrasted grassland management and animal production strategies in the Massif Central, France," Agricultural Systems, Elsevier, vol. 144(C), pages 133-143.
    5. Simon Briner & Michael Hartmann & Robert Finger & Bernard Lehmann, 2012. "Greenhouse gas mitigation and offset options for suckler cow farms: an economic comparison for the Swiss case," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(4), pages 337-355, April.
    6. Bradley G. Ridoutt & Peerasak Sanguansri & Gregory S. Harper, 2011. "Comparing Carbon and Water Footprints for Beef Cattle Production in Southern Australia," Sustainability, MDPI, vol. 3(12), pages 1-13, December.
    7. Forte, Annachiara & Zucaro, Amalia & De Vico, Gionata & Fierro, Angelo, 2016. "Carbon footprint of heliciculture: A case study from an Italian experimental farm," Agricultural Systems, Elsevier, vol. 142(C), pages 99-111.
    8. Pashaei Kamali, Farahnaz & van der Linden, Aart & Meuwissen, Miranda P.M. & Malafaia, Guilherme Cunha & Oude Lansink, Alfons G.J.M. & de Boer, Imke J.M., 2016. "Environmental and economic performance of beef farming systems with different feeding strategies in southern Brazil," Agricultural Systems, Elsevier, vol. 146(C), pages 70-79.
    9. Oishi, Kazato & Kato, Yohei & Ogino, Akifumi & Hirooka, Hiroyuki, 2013. "Economic and environmental impacts of changes in culling parity of cows and diet composition in Japanese beef cow–calf production systems," Agricultural Systems, Elsevier, vol. 115(C), pages 95-103.
    10. Zifei Liu & Yang Liu, 2018. "Mitigation of greenhouse gas emissions from animal production," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(4), pages 627-638, August.
    11. Modongo, Oteng & Kulshreshtha, Suren N., 2018. "Economics of mitigating greenhouse gas emissions from beef production in western Canada," Agricultural Systems, Elsevier, vol. 162(C), pages 229-238.
    12. Briner, Simon & Hartmann, Michael & Lehmann, Bernard, 2011. "Economic Assessment of Agroforestry Systems Compared to Other Greenhouse Gas Mitigation Options for Suckler Cow Farming," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114271, European Association of Agricultural Economists.
    13. Beauchemin, Karen A. & Henry Janzen, H. & Little, Shannan M. & McAllister, Tim A. & McGinn, Sean M., 2010. "Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study," Agricultural Systems, Elsevier, vol. 103(6), pages 371-379, July.
    14. Wiedemann, S.G. & Henry, B.K. & McGahan, E.J. & Grant, T. & Murphy, C.M. & Niethe, G., 2015. "Resource use and greenhouse gas intensity of Australian beef production: 1981–2010," Agricultural Systems, Elsevier, vol. 133(C), pages 109-118.
    15. Alvarez-Hess, Pablo S. & Little, Shannan M. & Moate, Peter J. & Jacobs, Joe L. & Beauchemin, Karen A. & Eckard, Richard J., 2019. "A partial life cycle assessment of the greenhouse gas mitigation potential of feeding 3-nitrooxypropanol and nitrate to cattle," Agricultural Systems, Elsevier, vol. 169(C), pages 14-23.
    16. Herron, Jonathan & Curran, Thomas P. & Moloney, Aidan P. & O'Brien, Donal, 2019. "Whole farm modelling the effect of grass silage harvest date and nitrogen fertiliser rate on nitrous oxide emissions from grass-based suckler to beef farming systems," Agricultural Systems, Elsevier, vol. 175(C), pages 66-78.
    17. McGee, M. & Moloney, A.P. & O'Riordan, E.G. & Regan, M. & Lenehan, C. & Kelly, A.K. & Crosson, P., 2023. "Pasture-finishing of late-maturing bulls or steers in a suckler calf-to-beef system: Animal production, meat quality, economics, greenhouse gas emissions and human-edible food-feed efficiency," Agricultural Systems, Elsevier, vol. 209(C).
    18. Vergé, X.P.C. & Dyer, J.A. & Desjardins, R.L. & Worth, D., 2008. "Greenhouse gas emissions from the Canadian beef industry," Agricultural Systems, Elsevier, vol. 98(2), pages 126-134, September.
    19. Hoffman, Eric & Cavigelli, Michel A. & Camargo, Gustavo & Ryan, Matthew & Ackroyd, Victoria J. & Richard, Tom L. & Mirsky, Steven, 2018. "Energy use and greenhouse gas emissions in organic and conventional grain crop production: Accounting for nutrient inflows," Agricultural Systems, Elsevier, vol. 162(C), pages 89-96.
    20. González-Quintero, Ricardo & van Wijk, Mark T. & Ruden, Alejandro & Gómez, Manuel & Pantevez, Heiber & Castro-Llanos, Fabio & Notenbaert, An & Arango, Jacobo, 2022. "Yield gap analysis to identify attainable milk and meat productivities and the potential for greenhouse gas emissions mitigation in cattle systems of Colombia," Agricultural Systems, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:4:y:2012:i:12:p:3279-3301:d:21912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.