IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v175y2019icp66-78.html
   My bibliography  Save this article

Whole farm modelling the effect of grass silage harvest date and nitrogen fertiliser rate on nitrous oxide emissions from grass-based suckler to beef farming systems

Author

Listed:
  • Herron, Jonathan
  • Curran, Thomas P.
  • Moloney, Aidan P.
  • O'Brien, Donal

Abstract

The intensification of agricultural production systems to produce food for the growing world population is envisaged to result in the increase in nitrous oxide emissions (N2O). The goal of this study was therefore to assess the effect of different management practices on greenhouse gas (GHG) emissions from contrasting grass-based suckler beef farms with a particular focus on N2O emissions. The contrasting grass-based suckler beef systems evaluated were intensive (INT) and extensive (EXT) steer and heifer (SH) beef systems and bull and heifer (BH) systems. A whole farm model approach was taken to simulate GHG emissions from these baseline systems using data from a long-term research trial and a hybrid economic-GHG model. Several aspects of the hybrid model were updated. Default values for nitrogen (N) content of fresh and conserved grass were replaced with prediction equations. N excretion and partitioning prediction equations and emission factors (EF) for N2O from grazing cattle and fertiliser were also updated. The four baseline systems were simulated to harvest first cut silage on May 24. The pasture fertiliser rate for the EXT and INT systems were 77 kg N ha−1 and 205 kg N ha−1, respectively. To test the effect of changing management practices, the four baseline systems were simulated at earlier (May 5) and later (June 28) first cut silage harvest dates and 50% higher and lower pasture fertiliser application rates. In total, GHG emissions from four baseline systems and sixteen alternative scenarios were simulated. The carbon footprint of the baseline systems in kg CO2-equivalent (CO2e) per kg of carcass weight (kg CO2e CW−1) ranged from 17.7 for BH EXT to 19.4 for SH INT. This was lower than the latest published EU average of 22.2 kg CO2e CW−1. Across all scenarios, the increase in fertiliser application rate and earlier first cut silage harvest date increased the kg N2O kg CW−1 of the four production systems. Due to younger slaughter age facilitating higher stocking rates and thus higher productivity per hectare, systems finishing males as bulls at 16 months had lower N2O and total GHG emissions than production systems finishing males as steers at 24 months. Therefore, BH EXT with increased fertiliser application rate and earlier silage harvest date was the most sustainable suckler to beef production system while SH EXT with reduced fertiliser application rate and later silage harvest date was the least sustainable suckler to beef production system due to longer time to slaughter and consequently lower stocking rate.

Suggested Citation

  • Herron, Jonathan & Curran, Thomas P. & Moloney, Aidan P. & O'Brien, Donal, 2019. "Whole farm modelling the effect of grass silage harvest date and nitrogen fertiliser rate on nitrous oxide emissions from grass-based suckler to beef farming systems," Agricultural Systems, Elsevier, vol. 175(C), pages 66-78.
  • Handle: RePEc:eee:agisys:v:175:y:2019:i:c:p:66-78
    DOI: 10.1016/j.agsy.2019.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X1830266X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. White, T.A. & Snow, V.O. & King, W.McG., 2010. "Intensification of New Zealand beef farming systems," Agricultural Systems, Elsevier, vol. 103(1), pages 21-35, January.
    2. Beauchemin, Karen A. & Henry Janzen, H. & Little, Shannan M. & McAllister, Tim A. & McGinn, Sean M., 2010. "Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study," Agricultural Systems, Elsevier, vol. 103(6), pages 371-379, July.
    3. Casey, J.W. & Holden, N.M., 2006. "Quantification of GHG emissions from sucker-beef production in Ireland," Agricultural Systems, Elsevier, vol. 90(1-3), pages 79-98, October.
    4. Pelletier, Nathan & Pirog, Rich & Rasmussen, Rebecca, 2010. "Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States," Agricultural Systems, Elsevier, vol. 103(6), pages 380-389, July.
    5. Alemu, Aklilu W. & Janzen, Henry & Little, Shannan & Hao, Xiying & Thompson, Donald J. & Baron, Vern & Iwaasa, Alan & Beauchemin, Karen A. & Kröbel, Roland, 2017. "Assessment of grazing management on farm greenhouse gas intensity of beef production systems in the Canadian Prairies using life cycle assessment," Agricultural Systems, Elsevier, vol. 158(C), pages 1-13.
    6. Crosson, P. & O'Kiely, P. & O'Mara, F.P. & Wallace, M., 2006. "The development of a mathematical model to investigate Irish beef production systems," Agricultural Systems, Elsevier, vol. 89(2-3), pages 349-370, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kearney, M. & O'Riordan, E.G. & Byrne, N. & Breen, J. & Crosson, P., 2023. "Mitigation of greenhouse gas emissions in pasture-based dairy-beef production systems," Agricultural Systems, Elsevier, vol. 211(C).
    2. Addisu H. Addis & Hugh T. Blair & Paul R. Kenyon & Stephen T. Morris & Nicola M. Schreurs, 2021. "Optimization of Profit for Pasture-Based Beef Cattle and Sheep Farming Using Linear Programming: Young Beef Cattle Production in New Zealand," Agriculture, MDPI, vol. 11(9), pages 1-14, September.
    3. Kearney, M. & O'Riordan, E.G. & McGee, M. & Breen, J. & Crosson, P., 2022. "Farm-level modelling of bioeconomic, greenhouse gas emissions and feed-food performance of pasture-based dairy-beef systems," Agricultural Systems, Elsevier, vol. 203(C).
    4. McGee, M. & Moloney, A.P. & O'Riordan, E.G. & Regan, M. & Lenehan, C. & Kelly, A.K. & Crosson, P., 2023. "Pasture-finishing of late-maturing bulls or steers in a suckler calf-to-beef system: Animal production, meat quality, economics, greenhouse gas emissions and human-edible food-feed efficiency," Agricultural Systems, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raymond L. Desjardins & Devon E. Worth & Xavier P. C. Vergé & Dominique Maxime & Jim Dyer & Darrel Cerkowniak, 2012. "Carbon Footprint of Beef Cattle," Sustainability, MDPI, vol. 4(12), pages 1-23, December.
    2. María I. Nieto & Olivia Barrantes & Liliana Privitello & Ramón Reiné, 2018. "Greenhouse Gas Emissions from Beef Grazing Systems in Semi-Arid Rangelands of Central Argentina," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    3. Alemu, Aklilu W. & Amiro, Brian D. & Bittman, Shabtai & MacDonald, Douglas & Ominski, Kim H., 2017. "Greenhouse gas emission of Canadian cow-calf operations: A whole-farm assessment of 295 farms," Agricultural Systems, Elsevier, vol. 151(C), pages 73-83.
    4. Stanley, Paige L. & Rowntree, Jason E. & Beede, David K. & DeLonge, Marcia S. & Hamm, Michael W., 2018. "Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems," Agricultural Systems, Elsevier, vol. 162(C), pages 249-258.
    5. Modongo, Oteng & Kulshreshtha, Suren N., 2018. "Economics of mitigating greenhouse gas emissions from beef production in western Canada," Agricultural Systems, Elsevier, vol. 162(C), pages 229-238.
    6. Bradley G. Ridoutt & Peerasak Sanguansri & Gregory S. Harper, 2011. "Comparing Carbon and Water Footprints for Beef Cattle Production in Southern Australia," Sustainability, MDPI, vol. 3(12), pages 1-13, December.
    7. McGee, M. & Moloney, A.P. & O'Riordan, E.G. & Regan, M. & Lenehan, C. & Kelly, A.K. & Crosson, P., 2023. "Pasture-finishing of late-maturing bulls or steers in a suckler calf-to-beef system: Animal production, meat quality, economics, greenhouse gas emissions and human-edible food-feed efficiency," Agricultural Systems, Elsevier, vol. 209(C).
    8. Pogue, Sarah J. & Kröbel, Roland & Janzen, H. Henry & Alemu, Aklilu W. & Beauchemin, Karen A. & Little, Shannan & Iravani, Majid & de Souza, Danielle Maia & McAllister, Tim A., 2020. "A social-ecological systems approach for the assessment of ecosystem services from beef production in the Canadian prairie," Ecosystem Services, Elsevier, vol. 45(C).
    9. White, Robin R. & Brady, Michael & Capper, Judith L. & Johnson, Kristen A., 2014. "Optimizing diet and pasture management to improve sustainability of U.S. beef production," Agricultural Systems, Elsevier, vol. 130(C), pages 1-12.
    10. González-Quintero, Ricardo & van Wijk, Mark T. & Ruden, Alejandro & Gómez, Manuel & Pantevez, Heiber & Castro-Llanos, Fabio & Notenbaert, An & Arango, Jacobo, 2022. "Yield gap analysis to identify attainable milk and meat productivities and the potential for greenhouse gas emissions mitigation in cattle systems of Colombia," Agricultural Systems, Elsevier, vol. 195(C).
    11. Bonnin, Dennis & Tabacco, Ernesto & Borreani, Giorgio, 2021. "Variability of greenhouse gas emissions and economic performances on 10 Piedmontese beef farms in North Italy," Agricultural Systems, Elsevier, vol. 194(C).
    12. Alemu, Aklilu W. & Janzen, Henry & Little, Shannan & Hao, Xiying & Thompson, Donald J. & Baron, Vern & Iwaasa, Alan & Beauchemin, Karen A. & Kröbel, Roland, 2017. "Assessment of grazing management on farm greenhouse gas intensity of beef production systems in the Canadian Prairies using life cycle assessment," Agricultural Systems, Elsevier, vol. 158(C), pages 1-13.
    13. Forte, Annachiara & Zucaro, Amalia & De Vico, Gionata & Fierro, Angelo, 2016. "Carbon footprint of heliciculture: A case study from an Italian experimental farm," Agricultural Systems, Elsevier, vol. 142(C), pages 99-111.
    14. Pashaei Kamali, Farahnaz & van der Linden, Aart & Meuwissen, Miranda P.M. & Malafaia, Guilherme Cunha & Oude Lansink, Alfons G.J.M. & de Boer, Imke J.M., 2016. "Environmental and economic performance of beef farming systems with different feeding strategies in southern Brazil," Agricultural Systems, Elsevier, vol. 146(C), pages 70-79.
    15. Giulio Lazzerini & Jacopo Manzini & Stefano Lucchetti & Stefania Nin & Francesco Paolo Nicese, 2022. "Greenhouse Gas Emissions and Carbon Sequestration from Conventional and Organic Olive Tree Nurseries in Tuscany, Italy," Sustainability, MDPI, vol. 14(24), pages 1-13, December.
    16. Oishi, Kazato & Kato, Yohei & Ogino, Akifumi & Hirooka, Hiroyuki, 2013. "Economic and environmental impacts of changes in culling parity of cows and diet composition in Japanese beef cow–calf production systems," Agricultural Systems, Elsevier, vol. 115(C), pages 95-103.
    17. Castaño-Sánchez, José P. & Rotz, C. Alan & McIntosh, Matthew M. & Tolle, Cindy & Gifford, Craig A. & Duff, Glenn C. & Spiegal, Sheri A., 2023. "Grass finishing of Criollo cattle can provide an environmentally preferred and cost effective meat supply chain from United States drylands," Agricultural Systems, Elsevier, vol. 210(C).
    18. Becona, Gonzalo & Astigarraga, Laura & Picasso, Valentin D., 2014. "Greenhouse Gas Emissions of Beef Cow-Calf Grazing Systems in Uruguay," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 3(2).
    19. Zifei Liu & Yang Liu, 2018. "Mitigation of greenhouse gas emissions from animal production," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(4), pages 627-638, August.
    20. Briner, Simon & Hartmann, Michael & Lehmann, Bernard, 2011. "Economic Assessment of Agroforestry Systems Compared to Other Greenhouse Gas Mitigation Options for Suckler Cow Farming," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114271, European Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:175:y:2019:i:c:p:66-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.