IDEAS home Printed from https://ideas.repec.org/a/bla/ajarec/v62y2018i1p45-64.html

China's changing diet and its impacts on greenhouse gas emissions: an index decomposition analysis

Author

Listed:
  • Jacob Hawkins
  • Chunbo Ma
  • Steven Schilizzi
  • Fan Zhang

Abstract

With increasing awareness of agriculture's contribution to global greenhouse gases (GHGs) and China's position as the world's top GHG emitter, there is heightened attention to the embodied emissions in China's food consumption. China's diet has shifted to include more fruit, vegetables, meat and dairy. Not surprisingly, GHG emissions from food consumption have also increased substantially. This analysis links China's food consumption with the emissions of food production industries in China and its trade partners to determine the effects of dietary change on GHGs since 1989. We utilise high†resolution food production and emissions data to perform a logarithmic mean Divisia index decomposition to attribute changes in GHG emissions to the scale, supply structure, demand structure and efficiency effects resulting from Chinese dietary changes over a 20†year period. This study finds that while countries supplying food to China contribute little to China's food†related GHGs, demands for meat and dairy play a much larger role, driving up emissions. The overall scale of increased consumption of all food further propels growth in GHG emissions. Results indicate, however, that while food consumption in China more than doubles between 1989 and 2009 improvements in technological efficiency limit the rate of increase.

Suggested Citation

  • Jacob Hawkins & Chunbo Ma & Steven Schilizzi & Fan Zhang, 2018. "China's changing diet and its impacts on greenhouse gas emissions: an index decomposition analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), pages 45-64, January.
  • Handle: RePEc:bla:ajarec:v:62:y:2018:i:1:p:45-64
    DOI: 10.1111/1467-8489.12240
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-8489.12240
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-8489.12240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Tang & Chuantian He & Chunbo Ma & Dong Wang, 2019. "Does carbon farming provide a cost‐effective option to mitigate GHG emissions? Evidence from China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), pages 575-592, July.
    2. Biondi, Beatrice & Castiglione, Concetta & Mazzocchi, Mario, 2021. "Demand drivers and changes in food-related emissions in the UK: A decomposition approach," Ecological Economics, Elsevier, vol. 188(C).
    3. Anthony Fardet & Edmond Rock, 2020. "Ultra-Processed Foods and Food System Sustainability: What Are the Links?," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    4. Kastratovic, Radovan, . "Impact of foreign direct investment on greenhouse gas emissions in agriculture of developing countries," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3).
    5. Tianyi Cai & Degang Yang & Xinhuan Zhang & Fuqiang Xia & Rongwei Wu, 2018. "Study on the Vertical Linkage of Greenhouse Gas Emission Intensity Change of the Animal Husbandry Sector between China and Its Provinces," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    6. Song, Feng & Reardon, Thomas & Tian, Xin & Lin, Chen, 2019. "The energy implication of China’s food system transformation," Applied Energy, Elsevier, vol. 240(C), pages 617-629.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ajarec:v:62:y:2018:i:1:p:45-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.