IDEAS home Printed from https://ideas.repec.org/a/bla/ajarec/v63y2019i3p575-592.html
   My bibliography  Save this article

Does carbon farming provide a cost‐effective option to mitigate GHG emissions? Evidence from China

Author

Listed:
  • Kai Tang
  • Chuantian He
  • Chunbo Ma
  • Dong Wang

Abstract

In this study, we apply a whole farm bioeconomic analysis to explore the changes in land use, farm practices and on‐farm greenhouse gas (GHG) emission under varying levels of agricultural greenhouse gas abatement incentives in the form of a carbon tax for a semi‐arid crop‐livestock farming system in China's Loess Plateau. Our results show that the optimised agricultural enterprises move towards being cropping‐dominated reducing on‐farm emission since livestock perform is the major source of emission. Farmers employ less oats‐based and rapeseed‐based rotations but more dry pea‐based rotations in the optimal enterprise mix. A substantial reduction in on‐farm greenhouse gas emission can be achieved at low cost with a small increase in carbon incentives. Our estimates indicate that crop‐livestock farmers in China's Loess Plateau may reduce their on‐farm GHG emission between 16.6 and 33 per cent with marginal abatement costs

Suggested Citation

  • Kai Tang & Chuantian He & Chunbo Ma & Dong Wang, 2019. "Does carbon farming provide a cost‐effective option to mitigate GHG emissions? Evidence from China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), pages 575-592, July.
  • Handle: RePEc:bla:ajarec:v:63:y:2019:i:3:p:575-592
    DOI: 10.1111/1467-8489.12306
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-8489.12306
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-8489.12306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Yantuan & Tang, Kai, 2023. "Does financial inclusion improve energy efficiency?," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    2. Tang, Kai & Hailu, Atakelty, 2020. "Smallholder farms’ adaptation to the impacts of climate change: Evidence from China’s Loess Plateau," Land Use Policy, Elsevier, vol. 91(C).
    3. Nawab Khan & Ram L. Ray & Hazem S. Kassem & Muhammad Ihtisham & Abdullah & Simplice A. Asongu & Stephen Ansah & Shemei Zhang, 2021. "Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset," Land, MDPI, vol. 10(10), pages 1-19, September.
    4. Twecan, Dalson & Wang, Weiguang & Xu, Junzeng & Mohmmed, Alnail, 2022. "Climate change vulnerability, adaptation measures, and risk perceptions at households level in Acholi sub-region, Northern Uganda," Land Use Policy, Elsevier, vol. 115(C).
    5. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    6. Hu, Shuo & Wang, Ailun & Du, Kerui, 2023. "Environmental tax reform and greenwashing: Evidence from Chinese listed companies," Energy Economics, Elsevier, vol. 124(C).
    7. Kai Tang & Qianbo Chen & Weijie Tan & Yi Jun Wu Feng, 2022. "The Impact of Financial Deepening on Carbon Reductions in China: Evidence from City- and Enterprise-Level Data," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    8. Wu, Jianxin & Xu, Hui & Tang, Kai, 2021. "Industrial agglomeration, CO2 emissions and regional development programs: A decomposition analysis based on 286 Chinese cities," Energy, Elsevier, vol. 225(C).
    9. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    10. Kai Tang, 2022. "The Effect of Left-Behind Women on Fertilizer Use: Evidence from China’s Rural Households Engaging in Rural-Urban Migration," IJERPH, MDPI, vol. 20(1), pages 1-12, December.
    11. Cezary A. Kwiatkowski & Małgorzata Pawłowska & Elżbieta Harasim & Lucjan Pawłowski, 2023. "Strategies of Climate Change Mitigation in Agriculture Plant Production—A Critical Review," Energies, MDPI, vol. 16(10), pages 1-27, May.
    12. Di Zhou & Xiaoyu Liang & Ye Zhou & Kai Tang, 2020. "Does Emission Trading Boost Carbon Productivity? Evidence from China’s Pilot Emission Trading Scheme," IJERPH, MDPI, vol. 17(15), pages 1-16, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ajarec:v:63:y:2019:i:3:p:575-592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.