IDEAS home Printed from https://ideas.repec.org/p/ags/iaae12/122939.html
   My bibliography  Save this paper

Total Factor Productivity And The Bio Economy Effects

Author

Listed:
  • Zúniga-González, Carlos Alberto

Abstract

This paper develops a new measure of total factor productivity growth in agricultural Production which incorporates Bio Economic components effects. The new measure is called the Bio Economic-Oriented Total Factor Productivity (BTFP) index, and incorporates components of Bio Economic as liquids biofuels. BTFP measure changes in Bio Economic efficiency and can be decomposed into bio economy efficiency change (BEC), and Bio Economic technological change (BTC) components. An empirical analysis, involving 7 Central American countries-level during 1980-2007, is provided using DEA methods. The results show an annual growth in bio economy total factor bio economy productivity growth of 1.1 percent, with bio economy efficiency change (or bio economy catch-up) contributing 0.03 percent per year and bio economy technical change (or bio ethanol frontier-shift) providing 0.09 percent.

Suggested Citation

  • Zúniga-González, Carlos Alberto, 2012. "Total Factor Productivity And The Bio Economy Effects," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 122939, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae12:122939
    DOI: 10.22004/ag.econ.122939
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/122939/files/ZunigaIAAE2012Paper%2014447.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.122939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fulginiti, Lilyan E & Perrin, Richard K, 1993. "Prices and Productivity in Agriculture," The Review of Economics and Statistics, MIT Press, vol. 75(3), pages 471-482, August.
    2. Zڮiga-Gonzlez, Carlos Alberto, 2011. "Texto B3ico de Economia Agrͣola: Su importancia para el Desarrollo Local Sostenible," Books, National Autonomous University of Nicaragua, León (Unan-León), Researching Center for Applied Economics (RCAE), number 111604.
    3. Amani Elobeid & Simla Tokgoz & Dermot J. Hayes & Bruce A. Babcock & Chad E. Hart, 2006. "Long-Run Impact of Corn-Based Ethanol on the Grain, Oilseed, and Livestock Sectors: A Preliminary Assessment, The," Center for Agricultural and Rural Development (CARD) Publications 06-bp49, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    4. Keith Wiebe & Meredith J. Soule & Clare Narrod & Vincent E. Breneman, 2003. "Resource Quality and Agricultural Productivity: A Multi-Country Comparison," Chapters, in: Keith Wiebe (ed.), Land Quality, Agricultural Productivity, and Food Security, chapter 7, pages 147-165, Edward Elgar Publishing.
    5. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    6. Simla Tokgoz & Amani Elobeid & Jacinto F. Fabiosa & Dermot J. Hayes & Bruce A. Babcock & Tun-Hsiang (Edward) Yu & Fengxia Dong & Chad E. Hart & John C. Beghin, 2007. "Emerging Biofuels: Outlook of Effects on U.S. Grain, Oilseed, and Livestock Markets," Food and Agricultural Policy Research Institute (FAPRI) Publications (archive only) 07-sr101, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    7. Zhang, Zibin & Vedenov, Dmitry V. & Wetzstein, Michael E., 2007. "Can the U.S. Ethanol Industry Compete in the Alternative Fuels' Market?," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34867, Southern Agricultural Economics Association.
    8. Kecuk Suhariyanto & Colin Thirtle, 2001. "Asian Agricultural Productivity and Convergence," Journal of Agricultural Economics, Wiley Blackwell, vol. 52(3), pages 96-110, September.
    9. Mindy L. Baker & Dermot J. Hayes & Bruce A. Babcock, 2008. "Crop-Based Biofuel Production under Acreage Constraints and Uncertainty," Center for Agricultural and Rural Development (CARD) Publications 08-wp460, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    10. Jean‐Christophe Bureau & Rolf Färe & Shawna Grosskopf, 1995. "A Comparison Of Three Nonparametric Measures Of Productivity Growth In European And United States Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 46(3), pages 309-326, September.
    11. Fulginiti, Lilyan E. & Perrin, Richard K., 1997. "LDC agriculture: Nonparametric Malmquist productivity indexes," Journal of Development Economics, Elsevier, vol. 53(2), pages 373-390, August.
    12. Barbara J. Craig & Philip G. Pardey & Johannes Roseboom, 1997. "International Productivity Patterns: Accounting for Input Quality, Infrastructure, and Research," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(4), pages 1064-1076.
    13. Yeboah, Osei-Agyeman & Gunden, Cihat & Shaik, Saleem & Allen, Albert J. & Li, Tongzhe, 2011. "Measurements of Agricultural Productivity and Efficiency Gains from NAFTA," 2011 Annual Meeting, February 5-8, 2011, Corpus Christi, Texas 98726, Southern Agricultural Economics Association.
    14. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    15. Tim J. Coelli & D. S. Prasada Rao, 2005. "Total factor productivity growth in agriculture: a Malmquist index analysis of 93 countries, 1980–2000," Agricultural Economics, International Association of Agricultural Economists, vol. 32(s1), pages 115-134, January.
    16. Yaisawarng, Suthathip & Klein, J Douglass, 1994. "The Effects of Sulfur Dioxide Controls on Productivity Change in the U.S. Electric Power Industry," The Review of Economics and Statistics, MIT Press, vol. 76(3), pages 447-460, August.
    17. V. Ball & Jean-Christophe Bureau & Jean-Pierre Butault & Richard Nehring, 2001. "Levels of Farm Sector Productivity: An International Comparison," Journal of Productivity Analysis, Springer, vol. 15(1), pages 5-29, January.
    18. Lilyan E. Fulginiti & Richard K. Perrin, 1998. "Agricultural productivity in developing countries," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 45-51, September.
    19. Nin, Alejandro & Arndt, Channing & Preckel, Paul V., 2003. "Is agricultural productivity in developing countries really shrinking? New evidence using a modified nonparametric approach," Journal of Development Economics, Elsevier, vol. 71(2), pages 395-415, August.
    20. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    21. Lilyan E. Fulginiti & Richard K. Perrin, 1999. "Have Price Policies Damaged Ldc Agricultural Productivity?," Contemporary Economic Policy, Western Economic Association International, vol. 17(4), pages 469-475, October.
    22. Shaik, Saleem & Perrin, Richard K., 2001. "Agricultural Productivity and Environmental Impacts: The Role of Non-parametric Analysis," 2001 Annual meeting, August 5-8, Chicago, IL 20565, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    23. Peter Lawrence & Colin Thirtle (ed.), 2001. "Africa and Asia in Comparative Economic Perspective," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-4039-0540-6.
    24. Daniel Tyteca, 1997. "Linear Programming Models for the Measurement of Environmental Performance of Firms—Concepts and Empirical Results," Journal of Productivity Analysis, Springer, vol. 8(2), pages 183-197, May.
    25. Rozakis, S. & Sourie, J. -C., 2005. "Micro-economic modelling of biofuel system in France to determine tax exemption policy under uncertainty," Energy Policy, Elsevier, vol. 33(2), pages 171-182, January.
    26. Jules Pretty & Craig Brett & David Gee & Rachel Hine & Chris Mason & James Morison & Matthew Rayment & Gert Van Der Bijl & Thomas Dobbs, 2001. "Policy Challenges and Priorities for Internalizing the Externalities of Modern Agriculture," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 44(2), pages 263-283.
    27. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blanco Orozco, Napoleón Vicente & Zuniga Gonzalez, Carlos Alberto, 2013. "Environmental Bio Economic Impact in Nicaragua," MPRA Paper 49357, University Library of Munich, Germany, revised 12 Jun 2013.
    2. Esposti, Roberto, 2012. "Knowledge, Technology and Innovations for a Bio-based Economy: Lessons from the Past, Challenges for the Future," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(3), pages 1-34, December.
    3. Alexandra Zbuchea & Florina Pînzaru & Mihail Busu & Sergiu-Octavian Stan & Alina Bârgăoanu, 2019. "Sustainable Knowledge Management and Its Impact on the Performances of Biotechnology Organizations," Sustainability, MDPI, vol. 11(2), pages 1-20, January.
    4. Blanco Orozco, Napoleón Vicente & Zuniga Gonzalez, Carlos Alberto, 2013. "Productivity Analysis in Power Generation Plants Connected to the National Grid: A New Case of Bio Economy in Nicaragua," MPRA Paper 49356, University Library of Munich, Germany, revised 25 Feb 2013.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim J. Coelli & D. S. Prasada Rao, 2005. "Total factor productivity growth in agriculture: a Malmquist index analysis of 93 countries, 1980–2000," Agricultural Economics, International Association of Agricultural Economists, vol. 32(s1), pages 115-134, January.
    2. Zúniga-González, Carlos Alberto, 2011. "Total Factor Productivity Growth in Agriculture: A Malmquist Index Analysis of 14 Countries, 1979-2008," Conference Papers 114036, National Autonomous University of Nicaragua, León (Unan-León), Researching Center for Applied Economics (RCAE).
    3. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    4. Nin Pratt, Alejandro & Yu, Bingxin, 2008. "An updated look at the recovery of agricultural productivity in Sub-Saharan Africa:," IFPRI discussion papers 787, International Food Policy Research Institute (IFPRI).
    5. Arega D. Alene, 2010. "Productivity growth and the effects of R&D in African agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 41(3‐4), pages 223-238, May.
    6. Nin Pratt, Alejandro & Falconi, César & Ludeña, Carlos E. & Martel, Pedro, 2015. "Productivity and the Performance of Agriculture in Latin America and the Caribbean: From the Lost Decade to the Commodity Boom," IDB Publications (Working Papers) 7306, Inter-American Development Bank.
    7. Mounir Belloumi & Mohamed Salah Matoussi, 2008. "Measuring Agricultural Productivity Growth in MENA Countries," Working Papers 416, Economic Research Forum, revised 06 Jan 2008.
    8. Carlos Ludena, 2010. "Agricultural Productivity Growth, Efficiency Change and Technical Progress in Latin America and the Caribbean," Research Department Publications 4675, Inter-American Development Bank, Research Department.
    9. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    10. Alene, Arega D., 2009. "Productivity growth and the effects of R&D in African agriculture," 2009 Conference, August 16-22, 2009, Beijing, China 51436, International Association of Agricultural Economists.
    11. Shilpa Chaudhary, 2012. "Trends in Total Factor Productivity in Indian Agriculture: State-level Evidence using non-parametric Sequential Malmquist Index," Working papers 215, Centre for Development Economics, Delhi School of Economics.
    12. Huang, Wei & Bruemmer, Bernhard & Huntsinger, Lynn, 2016. "Incorporating measures of grassland productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China," Ecological Economics, Elsevier, vol. 122(C), pages 1-11.
    13. Vernon W. Ruttan, 2002. "Productivity Growth in World Agriculture: Sources and Constraints," Journal of Economic Perspectives, American Economic Association, vol. 16(4), pages 161-184, Fall.
    14. Alfons Oude Lansink & Alan Wall, 2014. "Frontier models for evaluating environmental efficiency: an overview," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 43-50.
    15. Viet-Ngu Hoang & Mohammad Alauddin, 2012. "Input-Orientated Data Envelopment Analysis Framework for Measuring and Decomposing Economic, Environmental and Ecological Efficiency: An Application to OECD Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 431-452, March.
    16. Baltzer, Kenneth & Kløverpris, Jesper, 2008. "Improving the land use specification in the GTAP model," Conference papers 331748, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Truc Linh Le & Pai-Po Lee & Ke Chung Peng & Rebecca H. Chung, 2019. "Evaluation of total factor productivity and environmental efficiency of agriculture in nine East Asian countries," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 65(6), pages 249-258.
    18. Derek Headey & Mohammad Alauddin & D.S. Prasada Rao, 2010. "Explaining agricultural productivity growth: an international perspective," Agricultural Economics, International Association of Agricultural Economists, vol. 41(1), pages 1-14, January.
    19. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    20. Mindy L. Mallory & Dermot J. Hayes & Bruce A. Babcock, 2011. "Crop-Based Biofuel Production with Acreage Competition and Uncertainty," Land Economics, University of Wisconsin Press, vol. 87(4), pages 610-627.

    More about this item

    Keywords

    Productivity Analysis;

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • P51 - Political Economy and Comparative Economic Systems - - Comparative Economic Systems - - - Comparative Analysis of Economic Systems
    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae12:122939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.