IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i6p659-d1616500.html
   My bibliography  Save this article

The Effect of Farmers’ Insurance-Adoption Behavior on Input for Beef-Cattle Disease Prevention: Endogenous Switching Regression Model

Author

Listed:
  • Liangying Zhang

    (College of Economics and Management, Inner Mongolia Agricultural University, Hohhot 010010, China
    College of Investment and Insurance, Harbin Institute of Finance, Harbin 150030, China)

  • Yunhua Wu

    (College of Economics and Management, Inner Mongolia Agricultural University, Hohhot 010010, China)

Abstract

This study selects the Inner Mongolia Autonomous Region (IMAR), among the most crucial beef-cattle farming areas in China, to obtain data from the micro-surveys of 447 beef-cattle farmers. Utilizing an endogenous switching regression (ESR) model, this research empirically investigates the effect of farmers’ beef-cattle insurance enrollment behavior on their input of disease prevention. This study finds that farmers adopting beef-cattle insurance reduce beef-cattle disease-prevention input. Based on counterfactual assumptions, if insured farmers had not adopted insurance, their input in disease prevention would increase by 33.45%. Further research confirms that a decrease in the market purchase price of beef cattle enhances the negative effect of farmers’ insured behavior on input for beef-cattle disease prevention. The heterogeneity analysis leads to two more conclusions. One is that insured farmers have the largest reduction in shed-disinfection input, the smallest reduction in voluntary vaccination input, and an intermediate reduction in deworming input. The other is that the act of adopting insurance reduces disease-prevention input to a greater extent for farmers who are far from the core areas of beef-cattle farming or who have not experienced beef-cattle deaths.

Suggested Citation

  • Liangying Zhang & Yunhua Wu, 2025. "The Effect of Farmers’ Insurance-Adoption Behavior on Input for Beef-Cattle Disease Prevention: Endogenous Switching Regression Model," Agriculture, MDPI, vol. 15(6), pages 1-29, March.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:6:p:659-:d:1616500
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/6/659/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/6/659/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dercon, Stefan & Christiaensen, Luc, 2011. "Consumption risk, technology adoption and poverty traps: Evidence from Ethiopia," Journal of Development Economics, Elsevier, vol. 96(2), pages 159-173, November.
    2. Phoebe Koundouri & Marita Laukkanen & Sami Myyrä & Céline Nauges, 2009. "The effects of EU agricultural policy changes on farmers' risk attitudes," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 36(1), pages 53-77, March.
    3. Bruce A. Babcock & David A. Hennessy, 1996. "Input Demand under Yield and Revenue Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 416-427.
    4. Vincent H. Smith & Barry K. Goodwin, 1996. "Crop Insurance, Moral Hazard, and Agricultural Chemical Use," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 428-438.
    5. Michael Lokshin & Zurab Sajaia, 2004. "Maximum likelihood estimation of endogenous switching regression models," Stata Journal, StataCorp LLC, vol. 4(3), pages 282-289, September.
    6. Sergio H. Lence, 2000. "Using Consumption and Asset Return Data to Estimate Farmers' Time Preferences and Risk Attitudes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(4), pages 934-947.
    7. Kenneth W. Sibiko & Matin Qaim, 2020. "Weather index insurance, agricultural input use, and crop productivity in Kenya," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(1), pages 151-167, February.
    8. Robert G. Chambers, 1989. "Insurability and Moral Hazard in Agricultural Insurance Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(3), pages 604-616.
    9. Mohammed, M.A. & Ortmann, Gerald F., 2005. "Factors influencing adoption of livestock insurance by commercial dairy farmers in three Zobatat of Eritrea," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 44(2), pages 1-15, June.
    10. John K. Horowitz & Erik Lichtenberg, 1993. "Insurance, Moral Hazard, and Chemical Use in Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 926-935.
    11. David C. Hall & Thomas O. Knight & Keith H. Coble & Alan E. Baquet & George F. Patrick, 2003. "Analysis of Beef Producers' Risk Management Perceptions and Desire for Further Risk Management Education," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 25(2), pages 430-448.
    12. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    13. Mario J. Miranda & Joseph W. Glauber, 1997. "Systemic Risk, Reinsurance, and the Failure of Crop Insurance Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 206-215.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coleman, Jane A. & Shaik, Saleem, 2009. "Time-Varying Estimation of Crop Insurance Program in Altering North Dakota Farm Economic Structure," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49516, Agricultural and Applied Economics Association.
    2. Geoffroy Enjolras & Magali Aubert, 2018. "Does crop insurance lead to better environmental practices? Evidence from French farms," Post-Print hal-02048349, HAL.
    3. Feng, Shuaizhang & Han, Yujie & Qiu, Huanguang, 2021. "Does crop insurance reduce pesticide usage? Evidence from China," China Economic Review, Elsevier, vol. 69(C).
    4. Geoffroy Enjolras & Magali Aubert, 2020. "How does crop insurance influence pesticide use? Evidence from French farms," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(4), pages 461-485, December.
    5. Tang, Lin & Luo, Xiaofeng, 2021. "Can agricultural insurance encourage farmers to apply biological pesticides? Evidence from rural China," Food Policy, Elsevier, vol. 105(C).
    6. Tao Li & Lihong Chen & Xiaoxu Li & Sha Li & Haibing Chen & Hao Ji, 2021. "The Impact of Cost-of-Production Insurance on Input Expense of Fruit Growing in Ecologically Vulnerable Areas: Evidence from Shaanxi Province of China," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    7. Yu, Jisang & Smith, Aaron & Sumner, Daniel A., 2016. "The Effects of the Premium Subsidies in the U.S. Federal Crop Insurance Program on Crop Acreage," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236022, Agricultural and Applied Economics Association.
    8. Jisang Yu & Nathan P. Hendricks, 2020. "Input Use Decisions with Greater Information on Crop Conditions: Implications for Insurance Moral Hazard and the Environment," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 826-845, May.
    9. Carriquiry, Miguel A. & Osgood, Daniel E., 2006. "Index Insurance, Production Practices, and Probabilistic Climate Forecasts," 2006 Annual meeting, July 23-26, Long Beach, CA 21463, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Roberts, Michael J. & O'Donoghue, Erik J. & Key, Nigel D., 2003. "Chemical And Fertilizer Applications In Response To Crop Insurance: Evidence From Census Micro Data," 2003 Annual meeting, July 27-30, Montreal, Canada 21895, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Yu, Jisang & Hendricks, Nathan P., 2017. "Crop Insurance Moral Hazard from Price and Weather Forecasts," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258336, Agricultural and Applied Economics Association.
    12. Arora, Gaurav & Agarwal, Sandip K., 2020. "Agricultural input use and index insurance adoption: Concept and evidence," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304508, Agricultural and Applied Economics Association.
    13. Glauber, Joseph W., 2017. "Agricultural insurance and the WTO:," IFPRI book chapters, in: Bouët, Antoine; Laborde Debucquet, David (ed.), Agriculture, development, and the global trading system: 2000– 2015, chapter 10, International Food Policy Research Institute (IFPRI).
    14. Chongshang Zhang & Kaiyu Lyu & Chi Zhang, 2024. "The Impact of Crop Insurance on Fertilizer Use: Evidence from Grain Producers in China," Agriculture, MDPI, vol. 14(3), pages 1-13, March.
    15. He, Juan & Zheng, Xiaoyong & Rejesus, Roderick & Yorobe, Jose Jr, 2016. "Estimating the Effect of Crop Insurance on Input Use When Insured Farmers are Monitored," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235225, Agricultural and Applied Economics Association.
    16. Jeremy G. Weber & Nigel Key & Erik O’Donoghue, 2016. "Does Federal Crop Insurance Make Environmental Externalities from Agriculture Worse?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 707-742.
    17. Seo, Sangtaek & Mitchell, Paul D. & Leatham, David J., 2004. "Effects Of Federal Risk Management Programs On Land Allocation And Input Use," 2004 Annual meeting, August 1-4, Denver, CO 20160, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    18. Rejesus, Roderick M. & Lovell, Ashley C. & Little, Bertis B. & Cross, Mike H., 2003. "Determinants of Anomalous Prevented Planting Claims: Theory and Evidence from Crop Insurance," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 32(2), pages 1-15, October.
    19. Philippe Bontems & Celine Nauges, 2018. "Production choices with water markets and risk aversion: the role of initial allocations and forward trading," Post-Print hal-02349932, HAL.
    20. Rogna, Marco & Schamel, Günter & Weissensteiner, Alex, 2019. "Choosing Between Hail Insurance and Anti-Hail Nets: A Simple Model and a Simulation among Apples Producers in South Tyrol," 2019: Trading for Good - Agricultural Trade in the Context of Climate Change Adaptation and Mitigation... Symposium, June 23-25, 2019, Seville, Spain 312593, International Agricultural Trade Research Consortium.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:6:p:659-:d:1616500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.