IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i11p549-d445294.html
   My bibliography  Save this article

Drivers of Mechanization in Cotton Production in Benin, West Africa

Author

Listed:
  • Idelphonse O. Saliou

    (Laboratoire d’Economie Rurale et de Gestion des Exploitations Agricoles, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Abomey-Calavi, Cotonou 01 BP 526, Benin)

  • Afio Zannou

    (Laboratoire d’Economie Rurale et de Gestion des Exploitations Agricoles, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Abomey-Calavi, Cotonou 01 BP 526, Benin)

  • Augustin K. N. Aoudji

    (Laboratoire d’Etude sur la Pauvreté et la Performance de l’Agriculture, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, Abomey-Calavi, Cotonou 01 BP 526, Benin)

  • Albert N. Honlonkou

    (Laboratoire d’Economie des Systèmes Socio-Ecologiques et de la Population, Ecole Nationale d’Economie Appliquée et de Management, Université d’Abomey-Calavi, Cotonou BP 171, Godomey, Benin)

Abstract

In the context of Africa’s farm labor scarcity, the use of mechanization is crucial for agricultural development. In Benin, technological advances, such as animal traction and motorization, are struggling to achieve the success expected by producers. The objective of this research was to analyze the drivers of mechanization in cotton production in Benin. Data collected from 482 cotton producers in three agroecological zones of the country were analyzed using a multinomial Logit model. The results revealed that 34% of cotton producers used hand tools, compared to 31% using draught animals and 35% using tractors. Variables such as education level, area cropped, access to land, access to credit and agroecological zone had a positive influence on the probability of using mechanization in the cotton production. Family labor size per household had a negative influence on the probability of using farm mechanization. Women were more likely to use farm mechanization than men. This research suggests that mechanization policies should adapt agricultural equipment to the specificities of the production systems of each agroecological zone, and strengthen land tenure security and access to credit, particularly for women cotton producers.

Suggested Citation

  • Idelphonse O. Saliou & Afio Zannou & Augustin K. N. Aoudji & Albert N. Honlonkou, 2020. "Drivers of Mechanization in Cotton Production in Benin, West Africa," Agriculture, MDPI, vol. 10(11), pages 1-13, November.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:11:p:549-:d:445294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/11/549/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/11/549/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aryal, Jeetendra Prakash & Rahut, Dil Bahadur & Maharjan, Sofina & Erenstein, Olaf, 2019. "Understanding factors associated with agricultural mechanization: A Bangladesh case," World Development Perspectives, Elsevier, vol. 13(C), pages 1-9.
    2. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
    3. Khondoker A. Mottaleb & Dil Bahadur Rahut & Akhter Ali & Bruno Gérard & Olaf Erenstein, 2017. "Enhancing Smallholder Access to Agricultural Machinery Services: Lessons from Bangladesh," Journal of Development Studies, Taylor & Francis Journals, vol. 53(9), pages 1502-1517, September.
    4. Yukichi Y. & Mano Yukichi Y. & Takahashi Kazushi & Otsuka Keijiro, 2017. "Contract Farming, Farm Mechanization, and Agricultural Intensification: The Case of Rice Farming in Cote d’Ivoire," Working Papers 157, JICA Research Institute.
    5. Zhang, Xiaobo & Yang, Jin & Reardon, Thomas, 2020. "Mechanization outsourcing clusters and division of labor in Chinese agriculture," IFPRI book chapters, in: An evolving paradigm of agricultural mechanization development: How much can Africa learn from Asia?, chapter 2, pages 71-96, International Food Policy Research Institute (IFPRI).
    6. Binswanger, Hans, 1986. "Agricultural Mechanization: A Comparative Historical Perspective," The World Bank Research Observer, World Bank, vol. 1(1), pages 27-56, January.
    7. Arega D. Alene & V. M. Manyong, 2006. "Farmer‐to‐farmer technology diffusion and yield variation among adopters: the case of improved cowpea in northern Nigeria," Agricultural Economics, International Association of Agricultural Economists, vol. 35(2), pages 203-211, September.
    8. Keijiro Otsuka & Yanyan Liu & Futoshi Yamauchi, 2016. "The future of small farms in Asia," Development Policy Review, Overseas Development Institute, vol. 34(3), pages 441-461, May.
    9. Phu Nguyen-Van & Cyrielle Poiraud & Nguyen To-The, 2017. "Modeling farmers’ decisions on tea varieties in Vietnam: a multinomial logit analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 48(3), pages 291-299, May.
    10. Jin Yang & Zuhui Huang & Xiaobo Zhang & Thomas Reardon, 2013. "The Rapid Rise of Cross-Regional Agricultural Mechanization Services in China," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(5), pages 1245-1251.
    11. Kirui, Oliver Kiptoo, 2019. "The agricultural mechanization in Africa: micro-level analysis of state, drivers and effects," 2019 Sixth International Conference, September 23-26, 2019, Abuja, Nigeria 295819, African Association of Agricultural Economists (AAAE).
    12. Bola Amoke Awotide & Aziz A. Karimov & Aliou Diagne, 2016. "Agricultural technology adoption, commercialization and smallholder rice farmers’ welfare in rural Nigeria," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-24, December.
    13. Mounirou, Ichaou, 2018. "Agricultural Mechanization as an Expansion Factor of Cropland in Benin: The Case of Tractors," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 7(4).
    14. Andre Croppenstedt & Mulat Demeke & Meloria M. Meschi, 2003. "Technology Adoption in the Presence of Constraints: the Case of Fertilizer Demand in Ethiopia," Review of Development Economics, Wiley Blackwell, vol. 7(1), pages 58-70, February.
    15. Makate, Clifton & Makate, Marshall, 2019. "Interceding role of institutional extension services on the livelihood impacts of drought tolerant maize technology adoption in Zimbabwe," Technology in Society, Elsevier, vol. 56(C), pages 126-133.
    16. Pingali, Prabhu, 2007. "Agricultural Mechanization: Adoption Patterns and Economic Impact," Handbook of Agricultural Economics, in: Robert Evenson & Prabhu Pingali (ed.), Handbook of Agricultural Economics, edition 1, volume 3, chapter 54, pages 2779-2805, Elsevier.
    17. Paudel, Gokul P. & KC, Dilli Bahadur & Rahut, Dil Bahadur & Justice, Scott E. & McDonald, Andrew J., 2019. "Scale-appropriate mechanization impacts on productivity among smallholders: Evidence from rice systems in the mid-hills of Nepal," Land Use Policy, Elsevier, vol. 85(C), pages 104-113.
    18. Paudel, Gokul P. & Gartaula, Hom & Rahut, Dil Bahadur & Craufurd, Peter, 2020. "Gender differentiated small-scale farm mechanization in Nepal hills: An application of exogenous switching treatment regression," Technology in Society, Elsevier, vol. 61(C).
    19. Tavneet Suri, 2011. "Selection and Comparative Advantage in Technology Adoption," Econometrica, Econometric Society, vol. 79(1), pages 159-209, January.
    20. Ruttan, Vernon W., 1987. "Induced innovation and agricultural development," Food Policy, Elsevier, vol. 12(3), pages 196-216, August.
    21. Kirui, Oliver K. & von Braun, Joachim, 2018. "Mechanization in African Agriculture: A Continental Overview on Patterns and Dynamics," Working Papers 273522, University of Bonn, Center for Development Research (ZEF).
    22. Daum, Thomas & Capezzone, Filippo & Birner, Regina, 2019. "Of trackers and tractors. Using a smartphone app and compositional data analysis to explore the link between mechanization and intra-household allocation of time in Zambia," Discussion Papers 288434, University of Bonn, Center for Development Research (ZEF).
    23. Diao, Xinshen & Cossar, Frances & Houssou, Nazaire & Kolavalli, Shashidhara, 2014. "Mechanization in Ghana: Emerging demand, and the search for alternative supply models," Food Policy, Elsevier, vol. 48(C), pages 168-181.
    24. Hailu, Berihun Kassa & Abrha, Bihon Kassa & Weldegiorgis, Kibrom Aregawi, 2014. "Adoption and Impact of Agricultural Technologies on Farm Income: Evidence from Southern Tigray, Northern Ethiopia," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 2(4), pages 1-16, October.
    25. Daum, Thomas & Capezzone, Filippo & Birner, Regina, 2019. "Of trackers and tractors. Using a smartphone app to explore the link between agricultural mechanization and intra-household allocation of time in Zambia," 2019 Annual Meeting, July 21-23, Atlanta, Georgia 290989, Agricultural and Applied Economics Association.
    26. Kazushi Takahashi & Keijiro Otsuka, 2009. "The increasing importance of nonfarm income and the changing use of labor and capital in rice farming: the case of Central Luzon, 1979–2003," Agricultural Economics, International Association of Agricultural Economists, vol. 40(2), pages 231-242, March.
    27. Xiaobing Wang & Futoshi Yamauchi & Jikun Huang, 2016. "Rising wages, mechanization, and the substitution between capital and labor: evidence from small scale farm system in China," Agricultural Economics, International Association of Agricultural Economists, vol. 47(3), pages 309-317, May.
    28. Hassan, Rashid M. & Nhemachena, Charles, 2008. "Determinants of African farmers’ strategies for adapting to climate change: Multinomial choice analysis," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 2(1), pages 1-22, March.
    29. Adekunle, Ademola & Osazuwa, Peter & Raghavan, Vijaya, 2016. "Socio-economic determinants of agricultural mechanisation in Africa: A research note based on cassava cultivation mechanisation," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 313-319.
    30. Tse, Y K, 1987. "A Diagnostic Test for the Multinomial Logit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(2), pages 283-286, April.
    31. Hiroyuki Takeshima & Alejandro Nin—Pratt & Xinshen Diao, 2013. "Mechanization and Agricultural Technology Evolution, Agricultural Intensification in Sub-Saharan Africa: Typology of Agricultural Mechanization in Nigeria," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(5), pages 1230-1236.
    32. Julliet Wanjiku & John Uhuru Manyengo & Willis Oluoch-Kosura & Joseph T. Karugia, 2007. "Gender Differentiation in the Analysis of Alternative Farm Mechanization Choices on Small Farms in Kenya," WIDER Working Paper Series RP2007-15, World Institute for Development Economic Research (UNU-WIDER).
    33. Paudel, Gokul P. & KC, Dilli Bahadur & Rahut, Dil Bahadur & Khanal, Narayan P. & Justice, Scott E. & McDonald, Andrew J., 2019. "Smallholder farmers' willingness to pay for scale-appropriate farm mechanization: Evidence from the mid-hills of Nepal," Technology in Society, Elsevier, vol. 59(C).
    34. Yamauchi, Futoshi, 2016. "Rising real wages, mechanization and growing advantage of large farms: Evidence from Indonesia," Food Policy, Elsevier, vol. 58(C), pages 62-69.
    35. Van den Berg, M. Marrit & Hengsdijk, Huib & Wolf, Joost & Van Ittersum, Martin K. & Guanghuo, Wang & Roetter, Reimund P., 2007. "The impact of increasing farm size and mechanization on rural income and rice production in Zhejiang province, China," Agricultural Systems, Elsevier, vol. 94(3), pages 841-850, June.
    36. Udry, Christopher, 2010. "The economics of agriculture in Africa: Notes toward a research program," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 5(1), pages 1-16, September.
    37. Singh, Karam, 2000. "Education, Technology Adoption and Agricultural Productivity," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 55(3), September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi Li & Ming Zhu & Huang Huang & Yu Yi & Jingyi Fu, 2022. "Influencing Factors and Path Analysis of Sustainable Agricultural Mechanization: Econometric Evidence from Hubei, China," Sustainability, MDPI, vol. 14(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aryal, Jeetendra Prakash & Rahut, Dil Bahadur & Thapa, Ganesh & Simtowe, Franklin, 2021. "Mechanisation of small-scale farms in South Asia: Empirical evidence derived from farm households survey," Technology in Society, Elsevier, vol. 65(C).
    2. Belton, Ben & Win, Myat Thida & Zhang, Xiaobo & Filipski, Mateusz, 2021. "The rapid rise of agricultural mechanization in Myanmar," Food Policy, Elsevier, vol. 101(C).
    3. Zhou, Xiaoshi & Ma, Wanglin, 2021. "Effects of Agricultural Mechanization on Land Productivity: Evidence from China," 2021 Conference, August 17-31, 2021, Virtual 315143, International Association of Agricultural Economists.
    4. Paudel, Gokul P. & KC, Dilli Bahadur & Rahut, Dil Bahadur & Khanal, Narayan P. & Justice, Scott E. & McDonald, Andrew J., 2019. "Smallholder farmers' willingness to pay for scale-appropriate farm mechanization: Evidence from the mid-hills of Nepal," Technology in Society, Elsevier, vol. 59(C).
    5. Xi Yu & Xiyang Yin & Yuying Liu & Dongmei Li, 2021. "Do Agricultural Machinery Services Facilitate Land Transfer? Evidence from Rice Farmers in Sichuan Province, China," Land, MDPI, vol. 10(5), pages 1-14, April.
    6. Paudel, Gokul P. & Gartaula, Hom & Rahut, Dil Bahadur & Craufurd, Peter, 2020. "Gender differentiated small-scale farm mechanization in Nepal hills: An application of exogenous switching treatment regression," Technology in Society, Elsevier, vol. 61(C).
    7. Xiaoshi Zhou & Wanglin Ma & Gucheng Li, 2018. "Draft Animals, Farm Machines and Sustainable Agricultural Production: Insight from China," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    8. Paudel, Gokul P. & KC, Dilli Bahadur & Rahut, Dil Bahadur & Justice, Scott E. & McDonald, Andrew J., 2019. "Scale-appropriate mechanization impacts on productivity among smallholders: Evidence from rice systems in the mid-hills of Nepal," Land Use Policy, Elsevier, vol. 85(C), pages 104-113.
    9. Liu, Yan & Heerink, Nico & Li, Fan & Shi, Xiaoping, 2022. "Do agricultural machinery services promote village farmland rental markets? Theory and evidence from a case study in the North China plain," Land Use Policy, Elsevier, vol. 122(C).
    10. Qian, Long & Lu, Hua & Gao, Qiang & Lu, Hualiang, 2022. "Household-owned farm machinery vs. outsourced machinery services: The impact of agricultural mechanization on the land leasing behavior of relatively large-scale farmers in China," Land Use Policy, Elsevier, vol. 115(C).
    11. Xiaoshi Zhou & Wanglin Ma & Gucheng Li & Huanguang Qiu, 2020. "Farm machinery use and maize yields in China: an analysis accounting for selection bias and heterogeneity," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1282-1307, October.
    12. Teno, Gabriel & Lehrer, Kim & Kone, Abdoulaye, 2018. "Les facteurs de l’adoption des nouvelles technologies en agriculture en Afrique Subsaharienne: une revue de la littérature," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 13(2), June.
    13. Yuxin Cui, 2023. "Mechanization's impact on agricultural total factor productivity," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(11), pages 446-457.
    14. Thomas Daum & Filippo Capezzone & Regina Birner, 2021. "Using smartphone app collected data to explore the link between mechanization and intra-household allocation of time in Zambia," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(2), pages 411-429, June.
    15. Yukichi Mano & Kazushi Takahashi & Keijiro Otsuka, 2020. "Mechanization in land preparation and agricultural intensification: The case of rice farming in the Cote d'Ivoire," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 899-908, November.
    16. Suhao Wei & Yangxiao Lu, 2022. "Why China’s AMS Market Is Difficult to Develop Sustainably: Evidence from the North China Plain," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    17. Takeshima, Hiroyuki & Houssou, Nazaire & Diao, Xinshen, 2018. "Effects of tractor ownership on returns-to-scale in agriculture: Evidence from maize in Ghana," Food Policy, Elsevier, vol. 77(C), pages 33-49.
    18. Siyu Yang & Wei Li, 2022. "The Impact of Socialized Agricultural Machinery Services on Land Productivity: Evidence from China," Agriculture, MDPI, vol. 12(12), pages 1-18, December.
    19. Zhoufu Yan & Shurui Zhang & Fangwei Wu & Binlei Gong, 2023. "Increasing Wages, Factor Substitution, and Cropping Pattern Changes in China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 31(5), pages 190-214, September.
    20. Siyu Yang & Wei Li, 2023. "The Impact of Socialized Agricultural Machinery Services on the Labor Transfer of Maize Growers," Agriculture, MDPI, vol. 13(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:11:p:549-:d:445294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.