IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v171y2025icp916-932.html

Evaluating the low-carbon operation of high-speed rail and unveiling obstacles: A case study of Beijing-Shanghai HSR

Author

Listed:
  • Xue, Feng
  • Liang, Jielin
  • Zeng, Yu
  • Ma, Xiaochen

Abstract

Low-carbon operation (LCO) of high-speed rail (HSR) refers to a sustainable operational mode balancing HSR operations with socioeconomic development and environmental protection. It's a complex process influenced by multiple factors and their relationships, and the comprehensiveness of the evaluation method should be considered. This study developed an evaluation model based on the driving force–pressure–state–impact–response (DPSIR) framework to analyse the LCO of HSR and identify main obstacles using the obstacle diagnosis model. A case study of the Beijing–Shanghai (B-S) HSR validated the model. The findings indicated the following: (1) From 2012 to 2019, the LCO level of the B-S HSR increased by 10.6 % on average, developing from intermediate to good levels. (2) The main obstacle factors included proportion of HSR passenger traffic, the research and development (R&D) investment intensity, daily production carbon emissions, and traction carbon emissions (both total emissions and emissions per unit of turnover).

Suggested Citation

  • Xue, Feng & Liang, Jielin & Zeng, Yu & Ma, Xiaochen, 2025. "Evaluating the low-carbon operation of high-speed rail and unveiling obstacles: A case study of Beijing-Shanghai HSR," Transport Policy, Elsevier, vol. 171(C), pages 916-932.
  • Handle: RePEc:eee:trapol:v:171:y:2025:i:c:p:916-932
    DOI: 10.1016/j.tranpol.2025.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X25002604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2025.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Chuanzhong & Zhang, Zi-Ang & Fu, Xiaowen & Ge, Ying-En, 2024. "A low-carbon transportation network: Collaborative effects of a rail freight subsidy and carbon trading mechanism," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    2. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    3. Bueno, Gorka & Hoyos, David & Capellán-Pérez, Iñigo, 2017. "Evaluating the environmental performance of the high speed rail project in the Basque Country, Spain," Research in Transportation Economics, Elsevier, vol. 62(C), pages 44-56.
    4. Michael L. Anderson, 2014. "Subways, Strikes, and Slowdowns: The Impacts of Public Transit on Traffic Congestion," American Economic Review, American Economic Association, vol. 104(9), pages 2763-2796, September.
    5. Li, Pei & Lu, Yi & Wang, Jin, 2020. "The effects of fuel standards on air pollution: Evidence from China," Journal of Development Economics, Elsevier, vol. 146(C).
    6. Rui Jiang & Peng Wu & Chengke Wu, 2022. "Driving Factors behind Energy-Related Carbon Emissions in the U.S. Road Transport Sector: A Decomposition Analysis," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    7. Chang, Yuan & Lei, Shuhua & Teng, Jianjian & Zhang, Jiangxue & Zhang, Lixiao & Xu, Xiao, 2019. "The energy use and environmental emissions of high-speed rail transportation in China: A bottom-up modeling," Energy, Elsevier, vol. 182(C), pages 1193-1201.
    8. Yi Yang & Jiaying Gu & Siyu Huang & Meilin Wen & Yong Qin, 2022. "Application of Uncertain AHP Method in Analyzing Travel Time Belief Reliability in Transportation Network," Mathematics, MDPI, vol. 10(19), pages 1-20, October.
    9. Wang, Yanxia & Gan, Shaojun & Li, Kang & Chen, Yanyan, 2022. "Planning for low-carbon energy-transportation system at metropolitan scale: A case study of Beijing, China," Energy, Elsevier, vol. 246(C).
    10. Awasthi, Anjali & Omrani, Hichem & Gerber, Philippe, 2018. "Investigating ideal-solution based multicriteria decision making techniques for sustainability evaluation of urban mobility projects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 247-259.
    11. Scriban, Ramona Elena & Nichiforel, Liviu & Bouriaud, Laura Gianina & Barnoaiea, Ionut & Cosofret, Vasile Cosmin & Barbu, Catalina Oana, 2019. "Governance of the forest restitution process in Romania: An application of the DPSIR model," Forest Policy and Economics, Elsevier, vol. 99(C), pages 59-67.
    12. Zhang, Huimin & Li, Shukai & Wang, Yihui & Yang, Lixing & Gao, Ziyou, 2021. "Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: A Lagrangian relaxation-based decomposition algorithm," Omega, Elsevier, vol. 102(C).
    13. Sakdirat Kaewunruen & Jessada Sresakoolchai & Junying Peng, 2019. "Life Cycle Cost, Energy and Carbon Assessments of Beijing-Shanghai High-Speed Railway," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    14. Chengguang Lai & Xiaohong Chen & Xiaoyu Chen & Zhaoli Wang & Xushu Wu & Shiwei Zhao, 2015. "A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1243-1259, June.
    15. Chen, Yu & Wang, Yuandi & Zhao, Changyi, 2023. "How do high-speed rails influence city carbon emissions?," Energy, Elsevier, vol. 265(C).
    16. Linda E. Karjalainen & Sirkku Juhola, 2019. "Framework for Assessing Public Transportation Sustainability in Planning and Policy-Making," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    17. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    18. Shao, Shuai & Tian, Zhihua & Yang, Lili, 2017. "High speed rail and urban service industry agglomeration: Evidence from China's Yangtze River Delta region," Journal of Transport Geography, Elsevier, vol. 64(C), pages 174-183.
    19. Lingjie Sun & Yingyi Liu & Boyang Zhang & Yuwei Shang & Haiwen Yuan & Zhao Ma, 2016. "An Integrated Decision-Making Model for Transformer Condition Assessment Using Game Theory and Modified Evidence Combination Extended by D Numbers," Energies, MDPI, vol. 9(9), pages 1-22, August.
    20. Bugalia, Nikhil & Maemura, Yu & Ozawa, Kazumasa, 2021. "Demand risk management of private High-Speed Rail operators: A review of experiences in Japan and Taiwan," Transport Policy, Elsevier, vol. 113(C), pages 67-76.
    21. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    22. Zhao, Min & Sun, Tao, 2022. "Dynamic spatial spillover effect of new energy vehicle industry policies on carbon emission of transportation sector in China," Energy Policy, Elsevier, vol. 165(C).
    23. Wenqi Wang & Yuhong Sun & Jing Wu, 2018. "Environmental Warning System Based on the DPSIR Model: A Practical and Concise Method for Environmental Assessment," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    24. Todd Litman & David Burwell, 2006. "Issues in sustainable transportation," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 6(4), pages 331-347.
    25. Zhan, Shuguang & Wong, S.C. & Lo, S.M., 2020. "Social equity-based timetabling and ticket pricing for high-speed railways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 165-186.
    26. Du, Huibin & Chen, Zhenni & Peng, Binbin & Southworth, Frank & Ma, Shoufeng & Wang, Yuan, 2019. "What drives CO2 emissions from the transport sector? A linkage analysis," Energy, Elsevier, vol. 175(C), pages 195-204.
    27. Jinhua Xu & Xueying Wang & Yuanyuan Wang, 2024. "Insight into Policy Structure and Key Characteristics of China’s Low-Carbon Policy System: Based on Text Mining Method," Sustainability, MDPI, vol. 16(14), pages 1-21, July.
    28. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    29. Zhan, Shuguang & Wang, Pengling & Wong, S.C. & Lo, S.M., 2022. "Energy-efficient high-speed train rescheduling during a major disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    30. Saaty, Thomas L. & Vargas, Luis G., 1987. "Uncertainty and rank order in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 32(1), pages 107-117, October.
    31. Jonas Ammenberg & Sofia Dahlgren, 2021. "Sustainability Assessment of Public Transport, Part I—A Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    32. Yao, Lianxiao & Chen, Weidong, 2025. "Temporal and spatial evolution of low-carbon transportation efficiency and its influencing factors in China," Energy, Elsevier, vol. 315(C).
    33. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    34. Cheng, An & Jiang, Guogang & Teng, Xiangyu & Xu, Wenting & Li, Yimin & Wu, Longhui & Chiu, Yung-ho, 2024. "Changes in low-carbon transportation efficiency of Chinese roads after considering the impact of new energy vehicles," Transport Policy, Elsevier, vol. 159(C), pages 28-43.
    35. Peng Zhao & Yawei Li & Baoming Han & Ruixia Yang & Zhiping Liu, 2022. "Integrated Optimization of Rolling Stock Scheduling and Flexible Train Formation Based on Passenger Demand for an Intercity High-Speed Railway," Sustainability, MDPI, vol. 14(9), pages 1-22, May.
    36. Du, Zhili & Lin, Boqiang, 2019. "Changes in automobile energy consumption during urbanization: Evidence from 279 cities in China," Energy Policy, Elsevier, vol. 132(C), pages 309-317.
    37. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hui & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2021. "Policy analysis for high-speed rail in China: Evolution, evaluation, and expectation," Transport Policy, Elsevier, vol. 106(C), pages 37-53.
    2. Velasco, Alexandra & Gerike, Regine, 2024. "A composite index for the evaluation of sustainability in Latin American public transport systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    3. Jia, Ruining & Shao, Shuai & Yang, Lili, 2021. "High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach," Energy Economics, Elsevier, vol. 99(C).
    4. Jesuina Chipindula & Hongbo Du & Venkata S. V. Botlaguduru & Doeun Choe & Raghava R. Kommalapati, 2022. "Life cycle environmental impact of a high-speed rail system in the Houston-Dallas I-45 corridor," Public Transport, Springer, vol. 14(2), pages 481-501, June.
    5. Zhipeng Tang & Ziao Mei & Jialing Zou, 2021. "Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities?," Energies, MDPI, vol. 14(15), pages 1-18, July.
    6. Varvara S. Orfanidou & Dimitrios J. Dimitriou & Nikolaos P. Rachaniotis & Giannis T. Tsoulfas, 2024. "Critical Factors for Green Public Procurement: The Case of Greece," Logistics, MDPI, vol. 8(4), pages 1-19, December.
    7. Davis, Lucas W., 2021. "Estimating the price elasticity of demand for subways: Evidence from Mexico," Regional Science and Urban Economics, Elsevier, vol. 87(C).
    8. Elena Cervelli & Stefania Pindozzi & Emilia Allevato & Luigi Saulino & Roberto Silvestro & Ester Scotto di Perta & Antonio Saracino, 2022. "Landscape Planning Integrated Approaches to Support Post-Wildfire Restoration in Natural Protected Areas: The Vesuvius National Park Case Study," Land, MDPI, vol. 11(7), pages 1-25, July.
    9. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    10. Guo, Guisong & Li, Xiaodong & Zhu, Chen & Wu, Yankun & Chen, Jian & Chen, Peng & Cheng, Xi, 2025. "Establishing benchmarks to determine the embodied carbon performance of high-speed rail systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    11. Martin Adler & Stefanie Peer & Tanja Sinozic, 2019. "Autonomous, Connected, Electric Shared vehicles (ACES) and public finance: an explorative analysis," Tinbergen Institute Discussion Papers 19-005/VIII, Tinbergen Institute.
    12. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    13. Bochao Zhang & Wanhao Dong & Jin Yao, 2023. "The Opening of High-Speed Railways, the Improvement of Factor Allocation Efficiency between Regions, and the City’s Environmental Quality Improvement," IJERPH, MDPI, vol. 20(5), pages 1-28, March.
    14. Zhu, Junjie & Guo, Hongfeng, 2025. "Does the development of high-speed rail benefit carbon emissions reduction?," Transport Policy, Elsevier, vol. 172(C).
    15. Zhongshuai Shen & Xueying Bao & Zilong Li & Xiangru Lv, 2024. "Comparative Analysis of Carbon Emissions from Filled Embankment and Excavated Graben Schemes of Railway Subgrade Engineering," Sustainability, MDPI, vol. 16(19), pages 1-28, September.
    16. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    17. Yu, Yang & Li, Shuangqi & Sun, Huaping & Taghizadeh-Hesary, Farhad, 2021. "Energy carbon emission reduction of China’s transportation sector: An input–output approach," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 378-393.
    18. De Borger, Bruno & Proost, Stef, 2022. "Covid-19 and optimal urban transport policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 20-42.
    19. Jiang, Yu & Li, Zhichao & Wang, Yasha & Xue, Qingwen, 2025. "Vertiport location for eVTOL considering multidimensional demand of urban air mobility: An application in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    20. Li, Shan & Wu, Jianhong & Jiang, Yonglei & Yang, Xutao, 2024. "Impacts of the sea-rail intermodal transport policy on carbon emission reduction: The China case study," Transport Policy, Elsevier, vol. 158(C), pages 211-223.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:171:y:2025:i:c:p:916-932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.