IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v192y2025ics0965856424004014.html
   My bibliography  Save this article

Vertiport location for eVTOL considering multidimensional demand of urban air mobility: An application in Beijing

Author

Listed:
  • Jiang, Yu
  • Li, Zhichao
  • Wang, Yasha
  • Xue, Qingwen

Abstract

The development of electric vertical take-off and landing aircraft (eVTOL) is expected to provide a new mode of transportation and effectively alleviate traffic congestion in large cities. Vertiports are necessary landing and take-off facilities for eVTOL. The selection of the appropriate locations for vertiports is highly important for the development of urban air mobility (UAM). In this study, a systematic vertiport location method is constructed to facilitate UAM development. First, the UAM demand is evaluated considering the differences in UAM services. The demand is divided into on-demand mobility (ODM) demand and regular shuttle (RS) demand, which are separately evaluated with a discrete choice model. Then, the multidimensional polygon intersection point set (MPIPS) is deployed to determine the potential vertiport location. To improve the demand coverage of travel and decrease traffic congestion and redundant demand coverage, a multiobjective multistage facility maximum coverage location model is developed for vertiports. The nondominated sorting genetic algorithm, version 3 (NSGA-III), with three location strategies, namely, step-by-step, forward prioritization, and balanced development, is proposed to solve the model. Data from Beijing are used to validate the proposed model. The results indicate that the balanced development algorithm achieves the best performance, with an 84.4 % coverage rate of the RS demand and a 44.4 % coverage rate of the ODM demand. Constructing vertiports in high travel demand areas can significantly improve ODM and RS demand coverage and the ability to alleviate traffic congestion but inevitably leads to facility redundancy. However, constructing vertiports in high GDP areas would only marginally increase ODM demand coverage and have a negative effect on other metrics. Moreover, constructing vertiports in inaccessible areas can improve ODM demand coverage and decrease facility redundancy but reduces the ability to alleviate traffic congestion at facilities. These findings can improve the application of eVTOL, alleviate traffic congestion, reduce wasted construction resources, and optimize synergistic capabilities within the UAM system.

Suggested Citation

  • Jiang, Yu & Li, Zhichao & Wang, Yasha & Xue, Qingwen, 2025. "Vertiport location for eVTOL considering multidimensional demand of urban air mobility: An application in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transa:v:192:y:2025:i:c:s0965856424004014
    DOI: 10.1016/j.tra.2024.104353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424004014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Joon-Kyu & Yoo, Kwang-Eui & Song, Ki-Han, 2016. "A study on travelers' transport mode choice behavior using the mixed logit model: A case study of the Seoul-Jeju route," Journal of Air Transport Management, Elsevier, vol. 56(PB), pages 131-137.
    2. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    3. Rajendran, Suchithra & Zack, Joshua, 2019. "Insights on strategic air taxi network infrastructure locations using an iterative constrained clustering approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 470-505.
    4. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    5. Long, Qi & Ma, Jun & Jiang, Feifeng & Webster, Christopher John, 2023. "Demand analysis in urban air mobility: A literature review," Journal of Air Transport Management, Elsevier, vol. 112(C).
    6. Rajendran, Suchithra & Srinivas, Sharan & Grimshaw, Trenton, 2021. "Predicting demand for air taxi urban aviation services using machine learning algorithms," Journal of Air Transport Management, Elsevier, vol. 92(C).
    7. Pang, Jindong & An, Lan & Shen, Shulin, 2023. "Gasoline prices, traffic congestion, and carbon emissions," Resource and Energy Economics, Elsevier, vol. 75(C).
    8. Liying Yan & Manel Grifoll & Hongxiang Feng & Pengjun Zheng & Chunliang Zhou, 2022. "Optimization of Urban Distribution Centres: A Multi-Stage Dynamic Location Approach," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    9. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    10. Yang, Jun & Chen, Shuai & Qin, Ping & Lu, Fangwen & Liu, Antung A., 2018. "The effect of subway expansions on vehicle congestion: Evidence from Beijing," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 114-133.
    11. Hawas, Yaser E. & Hassan, Mohammad Nurul & Abulibdeh, Ammar, 2016. "A multi-criteria approach of assessing public transport accessibility at a strategic level," Journal of Transport Geography, Elsevier, vol. 57(C), pages 19-34.
    12. Coppola, Pierluigi & De Fabiis, Francesco & Silvestri, Fulvio, 2024. "Urban Air Mobility (UAM): Airport shuttles or city-taxis?," Transport Policy, Elsevier, vol. 150(C), pages 24-34.
    13. Reza Rahmati & Mahdi Bashiri & Erfaneh Nikzad & Ali Siadat, 2022. "A two-stage robust hub location problem with accelerated Benders decomposition algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 60(17), pages 5235-5257, September.
    14. Cohen, Adam P & Shaheen, Susan A PhD & Farrar, Emily M, 2021. "Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8nh0s83q, Institute of Transportation Studies, UC Berkeley.
    15. Yin, Chuanzhong & Zhang, Zi-Ang & Fu, Xiaowen & Ge, Ying-En, 2024. "A low-carbon transportation network: Collaborative effects of a rail freight subsidy and carbon trading mechanism," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    16. Dadashova, Bahar & Li, Xiao & Turner, Shawn & Koeneman, Pete, 2021. "Multivariate time series analysis of traffic congestion measures in urban areas as they relate to socioeconomic indicators," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    17. Rimjha, Mihir & Hotle, Susan & Trani, Antonio & Hinze, Nicolas, 2021. "Commuter demand estimation and feasibility assessment for Urban Air Mobility in Northern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 506-524.
    18. Marcel Paulssen & Dirk Temme & Akshay Vij & Joan Walker, 2014. "Values, attitudes and travel behavior: a hierarchical latent variable mixed logit model of travel mode choice," Transportation, Springer, vol. 41(4), pages 873-888, July.
    19. Hae Choi, Jong & Park, Yonghwa, 2022. "Exploring economic feasibility for airport shuttle service of urban air mobility (UAM)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 267-281.
    20. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    21. Liting Chen & Sebastian Wandelt & Weibin Dai & Xiaoqian Sun, 2022. "Scalable Vertiport Hub Location Selection for Air Taxi Operations in a Metropolitan Region," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 834-856, March.
    22. Goyal, Rohit & Reiche, Colleen & Fernando, Chris & Cohen, Adam, 2021. "Advanced Air Mobility: Demand Analysis and Market Potential of the Airport Shuttle and Air Taxi Markets," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4b3998tw, Institute of Transportation Studies, UC Berkeley.
    23. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "SP surveys to estimate Airport Shuttle demand in an Urban Air Mobility context," Transport Policy, Elsevier, vol. 141(C), pages 129-139.
    24. Rajendran, Suchithra & Srinivas, Sharan, 2020. "Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    25. Rohit Goyal & Colleen Reiche & Chris Fernando & Adam Cohen, 2021. "Advanced Air Mobility: Demand Analysis and Market Potential of the Airport Shuttle and Air Taxi Markets," Sustainability, MDPI, vol. 13(13), pages 1-15, July.
    26. Lazar Mrkela & Zorica Stanimirović, 2022. "A variable neighborhood search for the budget-constrained maximal covering location problem with customer preference ordering," Operational Research, Springer, vol. 22(5), pages 5913-5951, November.
    27. Jifu Guo & Mingzheng Sun & Ting Wang & Lu Lu, 2015. "Transportation development and congestion mitigation measures of Beijing, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(5), pages 651-663, June.
    28. Ilahi, Anugrah & Belgiawan, Prawira F. & Balac, Milos & Axhausen, Kay W., 2021. "Understanding travel and mode choice with emerging modes; a pooled SP and RP model in Greater Jakarta, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 398-422.
    29. Pemila Mani & Pongiannan Rakkiya Goundar Komarasamy & Narayanamoorthi Rajamanickam & Mohammad Shorfuzzaman & Waleed Mohammed Abdelfattah, 2024. "Enhancing Sustainable Transportation Infrastructure Management: A High-Accuracy, FPGA-Based System for Emergency Vehicle Classification," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangwan Lee & Jeongbae Jeon & Kuk Cho & Junhyuck Im, 2025. "Does Intercity Transportation Accessibility Matter? Its Effects on Regional Network Centrality in South Korea," Land, MDPI, vol. 14(4), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Qi & Ma, Jun & Jiang, Feifeng & Webster, Christopher John, 2023. "Demand analysis in urban air mobility: A literature review," Journal of Air Transport Management, Elsevier, vol. 112(C).
    2. Samadzad, Mahdi & Ansari, Fatemeh & Afshari Moez, Mohammad Amin, 2024. "Who will board urban air taxis? An analysis of advanced air mobility demand and value of travel time for business, airport access, and regional tourism trips in Iran," Journal of Air Transport Management, Elsevier, vol. 119(C).
    3. Shon, Heeseung & Lee, Jinwoo, 2025. "An optimization framework for urban air mobility (UAM) planning and operations," Journal of Air Transport Management, Elsevier, vol. 124(C).
    4. Zhao, Ying & Feng, Tao, 2025. "Commuter choice of UAM-friendly neighborhoods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    5. Coppola, Pierluigi & De Fabiis, Francesco & Silvestri, Fulvio, 2024. "Urban Air Mobility (UAM): Airport shuttles or city-taxis?," Transport Policy, Elsevier, vol. 150(C), pages 24-34.
    6. Garrow, Laurie A. & Mokhtarian, Patricia L. & German, Brian J. & “Jack” S. Glodek, John & Leonard, Caroline E., 2025. "Market segmentation of an electric vertical takeoff and landing (eVTOL) air taxi commuting service in five large U.S. cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    7. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    8. Kashav, Vishal & Garg, Chandra Prakash, 2025. "From innovation to adoption: A framework-based evaluation of sustainable adoption strategies for eVTOL vehicles in shared passenger and freight transportation system," Journal of Air Transport Management, Elsevier, vol. 124(C).
    9. Jaeho Yoo & Yunseon Choe & Soo-i Rim, 2022. "Risk Perceptions Using Urban and Advanced Air Mobility (UAM/AAM) by Applying a Mixed Method Approach," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    10. Farazi, Nahid Parvez & Zou, Bo, 2024. "Planning electric vertical takeoff and landing aircraft (eVTOL)-based package delivery with community noise impact considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    11. Lv, Di & Zhang, Wei & Wang, Kai & Hao, Han & Yang, Ying, 2024. "Urban Aerial Mobility for airport shuttle service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 188(C).
    12. Ariza-Montes, Antonio & Quan, Wei & Radic, Aleksandar & Koo, Bonhak & Kim, Jinkyung Jenny & Chua, Bee-Lia & Han, Heesup, 2023. "Understanding the behavioral intention to use urban air autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    13. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "New infrastructures for Urban Air Mobility systems: A systematic review on vertiport location and capacity," Journal of Air Transport Management, Elsevier, vol. 112(C).
    14. Mingkai Wang & Saulo O. D. Luiz & Shuguang Zhang & Antonio M. N. Lima, 2023. "Electric Flight in Extreme and Uncertain Urban Environments," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    15. Jang, Hyeokjun & Kwon, Yeongmin & Jang, Kitae & Kim, Suji, 2025. "Urban air mobility for airport access: Mode choice preference associated with socioeconomic status and airport usage behavior," Journal of Air Transport Management, Elsevier, vol. 124(C).
    16. Chae, Munhyun & Kim, Sang Ho & Kim, Migyoung & Park, Hee-Tae & Kim, Sang Hyun, 2024. "Potential market based policy considerations for urban air mobility," Journal of Air Transport Management, Elsevier, vol. 119(C).
    17. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "SP surveys to estimate Airport Shuttle demand in an Urban Air Mobility context," Transport Policy, Elsevier, vol. 141(C), pages 129-139.
    18. Lee, Changju & Bae, Bumjoon & Lee, Yu Lim & Pak, Tae-Young, 2023. "Societal acceptance of urban air mobility based on the technology adoption framework," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    19. Hae Choi, Jong & Park, Yonghwa, 2022. "Exploring economic feasibility for airport shuttle service of urban air mobility (UAM)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 267-281.
    20. Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Wu, Lingxiao & Li, Ang, 2024. "Integrated optimisation of strategic planning and service operations for urban air mobility systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:192:y:2025:i:c:s0965856424004014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.