IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v112y2023ics0969699723000790.html
   My bibliography  Save this article

Demand analysis in urban air mobility: A literature review

Author

Listed:
  • Long, Qi
  • Ma, Jun
  • Jiang, Feifeng
  • Webster, Christopher John

Abstract

Urban air mobility (UAM) is a novel concept that is revolutionizing urban transportation. This transformation is largely due to the development of electric vertical take-off and landing (eVTOL) vehicles, which have made UAM a reality in the urban region. The success of this emerging mode of transportation is largely dependent on market demand. However, there is a lack of systematic reviews on demand analysis for UAM. To address this gap, we conducted a comprehensive review of the recently published literature on demand analysis for UAM. We firstly identified the demand for UAM in various types of on-demand applications, including passenger services, cargo services, and other services. Secondly, we discussed and identified the factors that influence the market demand in UAM, such as time, cost, distance, congestion, safety, privacy, and noise. Additionally, we examined the existing qualitative and quantitative methods for demand analysis in UAM. We found that the most common techniques include stated-preference surveys, discrete choice models, and clustering algorithms. We further discussed the role of market demand in the UAM life cycle, highlighting the potential impacts of demand on the development, implementation, and regulation of UAM systems. Finally, we concluded our review by highlighting several opportunities for future research related to demand analysis for UAM, and these include feasibility of air shuttle services, potential cargo applications, public acceptance, infrastructure placement, integration with existing transportation, and novel demand estimation methods, while addressing various aspects of UAM life cycle, including vehicle technology, infrastructure, airspace, and operation management.

Suggested Citation

  • Long, Qi & Ma, Jun & Jiang, Feifeng & Webster, Christopher John, 2023. "Demand analysis in urban air mobility: A literature review," Journal of Air Transport Management, Elsevier, vol. 112(C).
  • Handle: RePEc:eee:jaitra:v:112:y:2023:i:c:s0969699723000790
    DOI: 10.1016/j.jairtraman.2023.102436
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699723000790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2023.102436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rajendran, Suchithra & Zack, Joshua, 2019. "Insights on strategic air taxi network infrastructure locations using an iterative constrained clustering approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 470-505.
    2. Rajendran, Suchithra & Shulman, Jake, 2020. "Study of emerging air taxi network operation using discrete-event systems simulation approach," Journal of Air Transport Management, Elsevier, vol. 87(C).
    3. Rajendran, Suchithra & Srinivas, Sharan & Grimshaw, Trenton, 2021. "Predicting demand for air taxi urban aviation services using machine learning algorithms," Journal of Air Transport Management, Elsevier, vol. 92(C).
    4. Ahmed, Sheikh Shahriar & Fountas, Grigorios & Eker, Ugur & Still, Stephen E. & Anastasopoulos, Panagiotis Ch, 2021. "An exploratory empirical analysis of willingness to hire and pay for flying taxis and shared flying car services," Journal of Air Transport Management, Elsevier, vol. 90(C).
    5. Straubinger, Anna & Rothfeld, Raoul & Shamiyeh, Michael & Büchter, Kai-Daniel & Kaiser, Jochen & Plötner, Kay Olaf, 2020. "An overview of current research and developments in urban air mobility – Setting the scene for UAM introduction," Journal of Air Transport Management, Elsevier, vol. 87(C).
    6. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    7. Cohen, Adam P & Shaheen, Susan A PhD & Farrar, Emily M, 2021. "Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8nh0s83q, Institute of Transportation Studies, UC Berkeley.
    8. Rimjha, Mihir & Hotle, Susan & Trani, Antonio & Hinze, Nicolas, 2021. "Commuter demand estimation and feasibility assessment for Urban Air Mobility in Northern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 506-524.
    9. Goyal, Rohit & Reiche, Colleen & Fernando, Chris & Cohen, Adam, 2021. "Advanced Air Mobility: Demand Analysis and Market Potential of the Airport Shuttle and Air Taxi Markets," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4b3998tw, Institute of Transportation Studies, UC Berkeley.
    10. Rajendran, Suchithra & Srinivas, Sharan, 2020. "Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    11. Rath, Srushti & Chow, Joseph Y.J., 2022. "Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access," Journal of Air Transport Management, Elsevier, vol. 105(C).
    12. Winter, Scott R. & Rice, Stephen & Lamb, Tracy L., 2020. "A prediction model of Consumer's willingness to fly in autonomous air taxis," Journal of Air Transport Management, Elsevier, vol. 89(C).
    13. Ilahi, Anugrah & Belgiawan, Prawira F. & Balac, Milos & Axhausen, Kay W., 2021. "Understanding travel and mode choice with emerging modes; a pooled SP and RP model in Greater Jakarta, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 398-422.
    14. Al Haddad, Christelle & Chaniotakis, Emmanouil & Straubinger, Anna & Plötner, Kay & Antoniou, Constantinos, 2020. "Factors affecting the adoption and use of urban air mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 696-712.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karami, Hossein & Abbasi, Mohammadhossein & Samadzad, Mahdi & Karami, Ali, 2024. "Unraveling behavioral factors influencing the adoption of urban air mobility from the end user's perspective in Tehran – A developing country outlook," Transport Policy, Elsevier, vol. 145(C), pages 74-84.
    2. Ren, Xinhui & Wang, Jiarui, 2025. "Symbiotic evolution mechanism of urban air mobility industrial innovation ecosystem: Evidence from low altitude air mobility in Shenzhen," Journal of Air Transport Management, Elsevier, vol. 124(C).
    3. Mercan, Tulin & Yavas, Volkan & Can, Dilek & Mercan, Yasin, 2025. "Vertiport location selection criteria for urban air mobility," Journal of Air Transport Management, Elsevier, vol. 124(C).
    4. Samadzad, Mahdi & Ansari, Fatemeh & Afshari Moez, Mohammad Amin, 2024. "Who will board urban air taxis? An analysis of advanced air mobility demand and value of travel time for business, airport access, and regional tourism trips in Iran," Journal of Air Transport Management, Elsevier, vol. 119(C).
    5. Jiang, Yu & Li, Zhichao & Wang, Yasha & Xue, Qingwen, 2025. "Vertiport location for eVTOL considering multidimensional demand of urban air mobility: An application in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    6. Zhao, Ying & Feng, Tao, 2025. "Commuter choice of UAM-friendly neighborhoods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    7. Kashav, Vishal & Garg, Chandra Prakash, 2025. "From innovation to adoption: A framework-based evaluation of sustainable adoption strategies for eVTOL vehicles in shared passenger and freight transportation system," Journal of Air Transport Management, Elsevier, vol. 124(C).
    8. Raj Bridgelall & Denver Tolliver, 2024. "Transforming Healthcare Delivery with Advanced Air Mobility: A Rural Study with GIS-Based Optimization," Sustainability, MDPI, vol. 16(13), pages 1-22, July.
    9. Coppola, Pierluigi & De Fabiis, Francesco & Silvestri, Fulvio, 2024. "Urban Air Mobility (UAM): Airport shuttles or city-taxis?," Transport Policy, Elsevier, vol. 150(C), pages 24-34.
    10. Raj Bridgelall, 2024. "Spatial Analysis of Middle-Mile Transport for Advanced Air Mobility: A Case Study of Rural North Dakota," Sustainability, MDPI, vol. 16(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shon, Heeseung & Lee, Jinwoo, 2025. "An optimization framework for urban air mobility (UAM) planning and operations," Journal of Air Transport Management, Elsevier, vol. 124(C).
    2. Jiang, Yu & Li, Zhichao & Wang, Yasha & Xue, Qingwen, 2025. "Vertiport location for eVTOL considering multidimensional demand of urban air mobility: An application in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    3. Zhao, Ying & Feng, Tao, 2025. "Commuter choice of UAM-friendly neighborhoods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    4. Samadzad, Mahdi & Ansari, Fatemeh & Afshari Moez, Mohammad Amin, 2024. "Who will board urban air taxis? An analysis of advanced air mobility demand and value of travel time for business, airport access, and regional tourism trips in Iran," Journal of Air Transport Management, Elsevier, vol. 119(C).
    5. Garrow, Laurie A. & Mokhtarian, Patricia L. & German, Brian J. & “Jack” S. Glodek, John & Leonard, Caroline E., 2025. "Market segmentation of an electric vertical takeoff and landing (eVTOL) air taxi commuting service in five large U.S. cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    6. Rath, Srushti & Chow, Joseph Y.J., 2022. "Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access," Journal of Air Transport Management, Elsevier, vol. 105(C).
    7. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    8. Kashav, Vishal & Garg, Chandra Prakash, 2025. "From innovation to adoption: A framework-based evaluation of sustainable adoption strategies for eVTOL vehicles in shared passenger and freight transportation system," Journal of Air Transport Management, Elsevier, vol. 124(C).
    9. Ariza-Montes, Antonio & Quan, Wei & Radic, Aleksandar & Koo, Bonhak & Kim, Jinkyung Jenny & Chua, Bee-Lia & Han, Heesup, 2023. "Understanding the behavioral intention to use urban air autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    10. Rajendran, Suchithra & Srinivas, Sharan & Grimshaw, Trenton, 2021. "Predicting demand for air taxi urban aviation services using machine learning algorithms," Journal of Air Transport Management, Elsevier, vol. 92(C).
    11. Coppola, Pierluigi & De Fabiis, Francesco & Silvestri, Fulvio, 2024. "Urban Air Mobility (UAM): Airport shuttles or city-taxis?," Transport Policy, Elsevier, vol. 150(C), pages 24-34.
    12. Lv, Di & Zhang, Wei & Wang, Kai & Hao, Han & Yang, Ying, 2024. "Urban Aerial Mobility for airport shuttle service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 188(C).
    13. Lee, Changju & Bae, Bumjoon & Lee, Yu Lim & Pak, Tae-Young, 2023. "Societal acceptance of urban air mobility based on the technology adoption framework," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    14. Karimi, Sina & Karami, Hossein & Samadzad, Mahdi, 2024. "The role of travel satisfaction and attitudes toward travel modes in the prospect of adoption of urban air taxis: Evidence from a stated preference survey in Tehran," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    15. Chen, Kexin & Shamshiripour, Ali & Seshadri, Ravi & Hasnine, Md Sami & Yoo, Lisa & Guan, Jinping & Alho, Andre Romano & Feldman, Daniel & Ben-Akiva, Moshe, 2024. "Potential short- to long-term impacts of on-demand urban air mobility on transportation demand in North America," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    16. Annitsa Koumoutsidi & Ioanna Pagoni & Amalia Polydoropoulou, 2022. "A New Mobility Era: Stakeholders’ Insights regarding Urban Air Mobility," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    17. Sadrani, Mohammad & Adamidis, Filippos & Garrow, Laurie A. & Antoniou, Constantinos, 2025. "Challenges in urban air mobility implementation: A comparative analysis of barriers in Germany and the United States," Journal of Air Transport Management, Elsevier, vol. 126(C).
    18. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "New infrastructures for Urban Air Mobility systems: A systematic review on vertiport location and capacity," Journal of Air Transport Management, Elsevier, vol. 112(C).
    19. Janotta, Frederica & Hogreve, Jens, 2024. "Ready for take-off? The dual role of affective and cognitive evaluations in the adoption of Urban Air Mobility services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    20. Boddupalli, Sreekar-Shashank & Garrow, Laurie A. & German, Brian J. & Newman, Jeffrey P., 2024. "Mode choice modeling for an electric vertical takeoff and landing (eVTOL) air taxi commuting service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:112:y:2023:i:c:s0969699723000790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.