IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v124y2025ics0969699725000122.html
   My bibliography  Save this article

Symbiotic evolution mechanism of urban air mobility industrial innovation ecosystem: Evidence from low altitude air mobility in Shenzhen

Author

Listed:
  • Ren, Xinhui
  • Wang, Jiarui

Abstract

The symbiotic evolution of subjects within the urban air mobility industrial innovation ecosystem is crucial for fostering coordinated development among stakeholders. It serves as a key foundation for achieving mutual benefits and driving high-quality growth in the low-altitude economy. Based on the conceptual model of the urban air mobility industrial innovation ecosystem, the Lokta-Volterra symbiotic evolution model is introduced. Different symbiotic evolution patterns within the system are simulated. Taking the innovation ecosystem of the low-altitude air mobility industry in Shenzhen as an example, the grey estimation method is used to measure the coefficient of symbiosis. This method helps identify the symbiotic relationship of the subjects within the system and analyze the mechanism of symbiotic evolution of the subjects within the innovation ecosystem of the urban air mobility industry under different evolutionary stages. The results show that: (1) The symbiotic relationship between the symbiotic subjects is determined by the symbiotic coefficient. (2) The symbiotic relationships among system subjects vary at different stages. When the symbiotic coefficients are all greater than zero, the subjects reach a reciprocal symbiotic relationship. (3) The innovation ecosystem of the low-altitude air traffic industry in Shenzhen is in the transition stage from growth to higher-order growth evolution. The subject has experienced the evolution process of dual-subject competitive symbiosis, single-subject biased symbiosis, and dual-subject competitive symbiosis. This study provides reference suggestions for the future symbiotic and synergistic development of the urban air mobility industry in the context of the low-altitude economy in other cities from the aspects of industrial balance, subject synergy and scenario innovation.

Suggested Citation

  • Ren, Xinhui & Wang, Jiarui, 2025. "Symbiotic evolution mechanism of urban air mobility industrial innovation ecosystem: Evidence from low altitude air mobility in Shenzhen," Journal of Air Transport Management, Elsevier, vol. 124(C).
  • Handle: RePEc:eee:jaitra:v:124:y:2025:i:c:s0969699725000122
    DOI: 10.1016/j.jairtraman.2025.102750
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699725000122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2025.102750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bacon, Emily & Williams, Michael D. & Davies, Gareth, 2020. "Coopetition in innovation ecosystems: A comparative analysis of knowledge transfer configurations," Journal of Business Research, Elsevier, vol. 115(C), pages 307-316.
    2. Long, Qi & Ma, Jun & Jiang, Feifeng & Webster, Christopher John, 2023. "Demand analysis in urban air mobility: A literature review," Journal of Air Transport Management, Elsevier, vol. 112(C).
    3. Marian Chertow & John Ehrenfeld, 2012. "Organizing Self‐Organizing Systems," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 13-27, February.
    4. Straubinger, Anna & Rothfeld, Raoul & Shamiyeh, Michael & Büchter, Kai-Daniel & Kaiser, Jochen & Plötner, Kay Olaf, 2020. "An overview of current research and developments in urban air mobility – Setting the scene for UAM introduction," Journal of Air Transport Management, Elsevier, vol. 87(C).
    5. Ron Adner & Rahul Kapoor, 2010. "Value creation in innovation ecosystems: how the structure of technological interdependence affects firm performance in new technology generations," Strategic Management Journal, Wiley Blackwell, vol. 31(3), pages 306-333, March.
    6. Kim, Sang Hyun, 2020. "Choice model based analysis of consumer preference for drone delivery service," Journal of Air Transport Management, Elsevier, vol. 84(C).
    7. Elia, Gianluca & Margherita, Alessandro & Passiante, Giuseppina, 2020. "Digital entrepreneurship ecosystem: How digital technologies and collective intelligence are reshaping the entrepreneurial process," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    8. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    9. Khurana, Indu & Dutta, Dev K, 2021. "From latent to emergent entrepreneurship in innovation ecosystems: The role of entrepreneurial learning," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    10. Bicong Wu & Syoum Negassi, 2023. "Symbiotic Evolution Mechanism of the Digital Innovation Ecosystem for the Smart Car Industry," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    11. Granstrand, Ove & Holgersson, Marcus, 2020. "Innovation ecosystems: A conceptual review and a new definition," Technovation, Elsevier, vol. 90.
    12. Ehrhardt, Nick & Horlacher, Paul Herrmann & Straubinger, Anna, 2024. "Innovation strategies for non-existent markets - Profiting from urban air mobility," Journal of Air Transport Management, Elsevier, vol. 118(C).
    13. Cohen, Adam P & Shaheen, Susan A PhD & Farrar, Emily M, 2021. "Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8nh0s83q, Institute of Transportation Studies, UC Berkeley.
    14. Al Haddad, Christelle & Chaniotakis, Emmanouil & Straubinger, Anna & Plötner, Kay & Antoniou, Constantinos, 2020. "Factors affecting the adoption and use of urban air mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 696-712.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samadzad, Mahdi & Ansari, Fatemeh & Afshari Moez, Mohammad Amin, 2024. "Who will board urban air taxis? An analysis of advanced air mobility demand and value of travel time for business, airport access, and regional tourism trips in Iran," Journal of Air Transport Management, Elsevier, vol. 119(C).
    2. Lee, Changju & Bae, Bumjoon & Lee, Yu Lim & Pak, Tae-Young, 2023. "Societal acceptance of urban air mobility based on the technology adoption framework," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    3. Shon, Heeseung & Lee, Jinwoo, 2025. "An optimization framework for urban air mobility (UAM) planning and operations," Journal of Air Transport Management, Elsevier, vol. 124(C).
    4. Long, Qi & Ma, Jun & Jiang, Feifeng & Webster, Christopher John, 2023. "Demand analysis in urban air mobility: A literature review," Journal of Air Transport Management, Elsevier, vol. 112(C).
    5. Zhao, Ying & Feng, Tao, 2025. "Commuter choice of UAM-friendly neighborhoods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    6. Sadrani, Mohammad & Adamidis, Filippos & Garrow, Laurie A. & Antoniou, Constantinos, 2025. "Challenges in urban air mobility implementation: A comparative analysis of barriers in Germany and the United States," Journal of Air Transport Management, Elsevier, vol. 126(C).
    7. Karami, Hossein & Abbasi, Mohammadhossein & Samadzad, Mahdi & Karami, Ali, 2024. "Unraveling behavioral factors influencing the adoption of urban air mobility from the end user's perspective in Tehran – A developing country outlook," Transport Policy, Elsevier, vol. 145(C), pages 74-84.
    8. Ariza-Montes, Antonio & Quan, Wei & Radic, Aleksandar & Koo, Bonhak & Kim, Jinkyung Jenny & Chua, Bee-Lia & Han, Heesup, 2023. "Understanding the behavioral intention to use urban air autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    9. Coppola, Pierluigi & De Fabiis, Francesco & Silvestri, Fulvio, 2024. "Urban Air Mobility (UAM): Airport shuttles or city-taxis?," Transport Policy, Elsevier, vol. 150(C), pages 24-34.
    10. Bo Liu & Yun-Fei Shao & Guowei Liu & Debing Ni, 2022. "An Evolutionary Analysis of Relational Governance in an Innovation Ecosystem," SAGE Open, , vol. 12(2), pages 21582440221, April.
    11. Garrow, Laurie A. & Mokhtarian, Patricia L. & German, Brian J. & “Jack” S. Glodek, John & Leonard, Caroline E., 2025. "Market segmentation of an electric vertical takeoff and landing (eVTOL) air taxi commuting service in five large U.S. cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    12. Khurana, Indu & Dutta, Dev K, 2021. "From latent to emergent entrepreneurship in innovation ecosystems: The role of entrepreneurial learning," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    13. Chae, Munhyun & Kim, Sang Ho & Kim, Migyoung & Park, Hee-Tae & Kim, Sang Hyun, 2024. "Potential market based policy considerations for urban air mobility," Journal of Air Transport Management, Elsevier, vol. 119(C).
    14. Lv, Di & Zhang, Wei & Wang, Kai & Hao, Han & Yang, Ying, 2024. "Urban Aerial Mobility for airport shuttle service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 188(C).
    15. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    16. Kashav, Vishal & Garg, Chandra Prakash, 2025. "From innovation to adoption: A framework-based evaluation of sustainable adoption strategies for eVTOL vehicles in shared passenger and freight transportation system," Journal of Air Transport Management, Elsevier, vol. 124(C).
    17. Chaudhary, Sanjay & Kaur, Puneet & Ferraris, Alberto & Bresciani, Stefano & Dhir, Amandeep, 2024. "Connecting entrepreneurial ecosystem and innovation. Grasping at straws or hitting a home run?," Technovation, Elsevier, vol. 130(C).
    18. Jiang, Yu & Li, Zhichao & Wang, Yasha & Xue, Qingwen, 2025. "Vertiport location for eVTOL considering multidimensional demand of urban air mobility: An application in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    19. Karimi, Sina & Karami, Hossein & Samadzad, Mahdi, 2024. "The role of travel satisfaction and attitudes toward travel modes in the prospect of adoption of urban air taxis: Evidence from a stated preference survey in Tehran," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    20. Robertson, Jeandri & Caruana, Albert & Ferreira, Caitlin, 2023. "Innovation performance: The effect of knowledge-based dynamic capabilities in cross-country innovation ecosystems," International Business Review, Elsevier, vol. 32(2).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:124:y:2025:i:c:s0969699725000122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.