IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v124y2025ics0969699724001856.html
   My bibliography  Save this article

An optimization framework for urban air mobility (UAM) planning and operations

Author

Listed:
  • Shon, Heeseung
  • Lee, Jinwoo

Abstract

This paper presents an optimized decision-support framework for the planning and operation of Urban Air Mobility (UAM) systems. Alleviating traffic congestion in metropolitan areas has been a persistent challenge for decades, leading to increased interest in aerial mobility solutions. Recent advancements in distributed electric propulsion, battery technology, and autonomous navigation have made electric vertical take-off and landing (eVTOL) aircraft a feasible option for intercity transport. For efficient UAM systems, we optimize the high-level planning of UAMs, i.e., determine the numbers of eVTOLs, vertiport spaces, and chargers, together with lower-level operations to control each eVTOL's operational state between in-service, charging, idling, and relocating. Accounting for spatio-temporal demand and cost heterogeneity, we formulate the UAM optimization framework as a mixed-integer programming problem. In our numerical study, we analyze a scenario involving three hypothetical vertiports in the Seoul Metropolitan Area, South Korea. The results reveal relationships between the optimal solution and several exogenous factors critical to eVTOL operations, including the targeted level of service for users and eVTOL charging speed. Additionally, we conduct Monte Carlo simulations to demonstrate the robustness of our solution against stochastic demand and variations in electric consumption.

Suggested Citation

  • Shon, Heeseung & Lee, Jinwoo, 2025. "An optimization framework for urban air mobility (UAM) planning and operations," Journal of Air Transport Management, Elsevier, vol. 124(C).
  • Handle: RePEc:eee:jaitra:v:124:y:2025:i:c:s0969699724001856
    DOI: 10.1016/j.jairtraman.2024.102720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699724001856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2024.102720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peeta, Srinivas & Paz, Alexander & DeLaurentis, Dan, 2008. "Stated preference analysis of a new very light jet based on-demand air service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 629-645, May.
    2. Rajendran, Suchithra & Srinivas, Sharan & Grimshaw, Trenton, 2021. "Predicting demand for air taxi urban aviation services using machine learning algorithms," Journal of Air Transport Management, Elsevier, vol. 92(C).
    3. Gambella, Claudio & Malaguti, Enrico & Masini, Filippo & Vigo, Daniele, 2018. "Optimizing relocation operations in electric car-sharing," Omega, Elsevier, vol. 81(C), pages 234-245.
    4. Ahmed, Sheikh Shahriar & Fountas, Grigorios & Eker, Ugur & Still, Stephen E. & Anastasopoulos, Panagiotis Ch, 2021. "An exploratory empirical analysis of willingness to hire and pay for flying taxis and shared flying car services," Journal of Air Transport Management, Elsevier, vol. 90(C).
    5. Straubinger, Anna & Rothfeld, Raoul & Shamiyeh, Michael & Büchter, Kai-Daniel & Kaiser, Jochen & Plötner, Kay Olaf, 2020. "An overview of current research and developments in urban air mobility – Setting the scene for UAM introduction," Journal of Air Transport Management, Elsevier, vol. 87(C).
    6. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    7. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    8. Rahul Nair & Elise Miller-Hooks, 2011. "Fleet Management for Vehicle Sharing Operations," Transportation Science, INFORMS, vol. 45(4), pages 524-540, November.
    9. Cohen, Adam P & Shaheen, Susan A PhD & Farrar, Emily M, 2021. "Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8nh0s83q, Institute of Transportation Studies, UC Berkeley.
    10. Rimjha, Mihir & Hotle, Susan & Trani, Antonio & Hinze, Nicolas, 2021. "Commuter demand estimation and feasibility assessment for Urban Air Mobility in Northern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 506-524.
    11. Hae Choi, Jong & Park, Yonghwa, 2022. "Exploring economic feasibility for airport shuttle service of urban air mobility (UAM)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 267-281.
    12. Goyal, Rohit & Reiche, Colleen & Fernando, Chris & Cohen, Adam, 2021. "Advanced Air Mobility: Demand Analysis and Market Potential of the Airport Shuttle and Air Taxi Markets," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4b3998tw, Institute of Transportation Studies, UC Berkeley.
    13. Rath, Srushti & Chow, Joseph Y.J., 2022. "Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access," Journal of Air Transport Management, Elsevier, vol. 105(C).
    14. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2015. "An optimization framework for the development of efficient one-way car-sharing systems," European Journal of Operational Research, Elsevier, vol. 240(3), pages 718-733.
    15. Kek, Alvina G.H. & Cheu, Ruey Long & Meng, Qiang & Fung, Chau Ha, 2009. "A decision support system for vehicle relocation operations in carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 149-158, January.
    16. Rohit Goyal & Colleen Reiche & Chris Fernando & Adam Cohen, 2021. "Advanced Air Mobility: Demand Analysis and Market Potential of the Airport Shuttle and Air Taxi Markets," Sustainability, MDPI, vol. 13(13), pages 1-15, July.
    17. Winter, Scott R. & Rice, Stephen & Lamb, Tracy L., 2020. "A prediction model of Consumer's willingness to fly in autonomous air taxis," Journal of Air Transport Management, Elsevier, vol. 89(C).
    18. Al Haddad, Christelle & Chaniotakis, Emmanouil & Straubinger, Anna & Plötner, Kay & Antoniou, Constantinos, 2020. "Factors affecting the adoption and use of urban air mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 696-712.
    19. Daganzo, Carlos F. & Ouyang, Yanfeng, 2019. "A general model of demand-responsive transportation services: From taxi to ridesharing to dial-a-ride," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 213-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:osf:osfxxx:m5sd9_v1 is not listed on IDEAS
    2. Marzouk, Osama Ahmed, 2025. "Aerial e-mobility perspective: Anticipated designs and operational capabilities of eVTOL urban air mobility (UAM) aircraft," OSF Preprints m5sd9, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Qi & Ma, Jun & Jiang, Feifeng & Webster, Christopher John, 2023. "Demand analysis in urban air mobility: A literature review," Journal of Air Transport Management, Elsevier, vol. 112(C).
    2. Garrow, Laurie A. & Mokhtarian, Patricia L. & German, Brian J. & “Jack” S. Glodek, John & Leonard, Caroline E., 2025. "Market segmentation of an electric vertical takeoff and landing (eVTOL) air taxi commuting service in five large U.S. cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    3. Jiang, Yu & Li, Zhichao & Wang, Yasha & Xue, Qingwen, 2025. "Vertiport location for eVTOL considering multidimensional demand of urban air mobility: An application in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    4. Zhao, Ying & Feng, Tao, 2025. "Commuter choice of UAM-friendly neighborhoods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    5. Ariza-Montes, Antonio & Quan, Wei & Radic, Aleksandar & Koo, Bonhak & Kim, Jinkyung Jenny & Chua, Bee-Lia & Han, Heesup, 2023. "Understanding the behavioral intention to use urban air autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    6. Lv, Di & Zhang, Wei & Wang, Kai & Hao, Han & Yang, Ying, 2024. "Urban Aerial Mobility for airport shuttle service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 188(C).
    7. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    8. Lee, Changju & Bae, Bumjoon & Lee, Yu Lim & Pak, Tae-Young, 2023. "Societal acceptance of urban air mobility based on the technology adoption framework," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    9. Coppola, Pierluigi & De Fabiis, Francesco & Silvestri, Fulvio, 2024. "Urban Air Mobility (UAM): Airport shuttles or city-taxis?," Transport Policy, Elsevier, vol. 150(C), pages 24-34.
    10. Samadzad, Mahdi & Ansari, Fatemeh & Afshari Moez, Mohammad Amin, 2024. "Who will board urban air taxis? An analysis of advanced air mobility demand and value of travel time for business, airport access, and regional tourism trips in Iran," Journal of Air Transport Management, Elsevier, vol. 119(C).
    11. Rath, Srushti & Chow, Joseph Y.J., 2022. "Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access," Journal of Air Transport Management, Elsevier, vol. 105(C).
    12. Chen, Kexin & Shamshiripour, Ali & Seshadri, Ravi & Hasnine, Md Sami & Yoo, Lisa & Guan, Jinping & Alho, Andre Romano & Feldman, Daniel & Ben-Akiva, Moshe, 2024. "Potential short- to long-term impacts of on-demand urban air mobility on transportation demand in North America," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    13. Annitsa Koumoutsidi & Ioanna Pagoni & Amalia Polydoropoulou, 2022. "A New Mobility Era: Stakeholders’ Insights regarding Urban Air Mobility," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    14. Janotta, Frederica & Hogreve, Jens, 2024. "Ready for take-off? The dual role of affective and cognitive evaluations in the adoption of Urban Air Mobility services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    15. Martin, Layla & Minner, Stefan, 2021. "Feature-based selection of carsharing relocation modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    16. Chang, Ximing & Wu, Jianjun & Correia, Gonçalo Homem de Almeida & Sun, Huijun & Feng, Ziyan, 2022. "A cooperative strategy for optimizing vehicle relocations and staff movements in cities where several carsharing companies operate simultaneously," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    17. Chae, Munhyun & Kim, Sang Ho & Kim, Migyoung & Park, Hee-Tae & Kim, Sang Hyun, 2024. "Potential market based policy considerations for urban air mobility," Journal of Air Transport Management, Elsevier, vol. 119(C).
    18. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    19. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "SP surveys to estimate Airport Shuttle demand in an Urban Air Mobility context," Transport Policy, Elsevier, vol. 141(C), pages 129-139.
    20. Kashav, Vishal & Garg, Chandra Prakash, 2025. "From innovation to adoption: A framework-based evaluation of sustainable adoption strategies for eVTOL vehicles in shared passenger and freight transportation system," Journal of Air Transport Management, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:124:y:2025:i:c:s0969699724001856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.