IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v84y2020ics0969699719304661.html
   My bibliography  Save this article

Choice model based analysis of consumer preference for drone delivery service

Author

Listed:
  • Kim, Sang Hyun

Abstract

It is anticipated that drones will soon be utilized for a range of applications, including delivery service. However, there has been a lack of research on consumer preference between drone delivery service and traditional delivery service. This is the first study to analyze the consumer preference for drone delivery based on a discrete choice model between the drone delivery service and traditional delivery services by truck or motorcycle. The discrete choice model is estimated using a stated preference survey, and potential consumers’ preference is analyzed for representative commodities with different price. The results show that the price and type of commodities influence consumer preference, which also depends on socio-demographic characteristics such as gender, age, and household income. Specifically, it was consistently observed in all cases that the younger the age, the higher the preference for drone delivery service. This study contributes to predicting the consumer preference for drone delivery service before real service offerings and to supporting the establishment of business strategies for companies who prepare for the new market of drone-based delivery.

Suggested Citation

  • Kim, Sang Hyun, 2020. "Choice model based analysis of consumer preference for drone delivery service," Journal of Air Transport Management, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:jaitra:v:84:y:2020:i:c:s0969699719304661
    DOI: 10.1016/j.jairtraman.2020.101785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699719304661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2020.101785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chorus, Caspar G. & Kroesen, Maarten, 2014. "On the (im-)possibility of deriving transport policy implications from hybrid choice models," Transport Policy, Elsevier, vol. 36(C), pages 217-222.
    2. Jou, Rong-Chang & Hensher, David A. & Hsu, Tzu-Lan, 2011. "Airport ground access mode choice behavior after the introduction of a new mode: A case study of Taoyuan International Airport in Taiwan," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(3), pages 371-381, May.
    3. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    4. Shinghal, Nalin & Fowkes, Tony, 2002. "Freight mode choice and adaptive stated preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(5), pages 367-378, September.
    5. Furuichi, Masahiko & Koppelman, Frank S., 1994. "An analysis of air travelers' departure airport and destination choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(3), pages 187-195, May.
    6. Mary R Brooks & Sean M Puckett & David A Hensher & Adrian Sammons, 2012. "Understanding mode choice decisions: A study of Australian freight shippers," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 14(3), pages 274-299, September.
    7. Proussaloglou, Kimon & Koppelman, Frank S., 1999. "The choice of air carrier, flight, and fare class," Journal of Air Transport Management, Elsevier, vol. 5(4), pages 193-201.
    8. Stephane Hess & John W. Polak, 2006. "Airport, airline and access mode choice in the San Francisco Bay area," Papers in Regional Science, Wiley Blackwell, vol. 85(4), pages 543-567, November.
    9. Lee, Joon-Kyu & Kim, Sang Hyun & Sim, Ga Ram, 2019. "Mode choice behavior analysis of air transport on the introduction of remotely piloted passenger aircraft," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 48-55.
    10. Green, Paul E & Srinivasan, V, 1978. "Conjoint Analysis in Consumer Research: Issues and Outlook," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 5(2), pages 103-123, Se.
    11. Louviere, Jordan J & Hensher, David A, 1983. "Using Discrete Choice Models with Experimental Design Data to Forecast Consumer Demand for a Unique Cultural Event," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 10(3), pages 348-361, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinhui Ren & Caixia Cheng, 2020. "Model of Third-Party Risk Index for Unmanned Aerial Vehicle Delivery in Urban Environment," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    2. Sham, Rohana & Chong, Han Xi & Cheng-Xi Aw, Eugene & Bibi Tkm Thangal, Thahira & Abdamia, Noranita binti, 2023. "Switching up the delivery game: Understanding switching intention to retail drone delivery services," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    3. Amalia Polydoropoulou & Athena Tsirimpa & Ioannis Karakikes & Ioannis Tsouros & Ioanna Pagoni, 2022. "Mode Choice Modeling for Sustainable Last-Mile Delivery: The Greek Perspective," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    4. Cai, Lanhui & Yuen, Kum Fai & Xie, Diancen & Fang, Mingjie & Wang, Xueqin, 2021. "Consumer's usage of logistics technologies: Integration of habit into the unified theory of acceptance and use of technology," Technology in Society, Elsevier, vol. 67(C).
    5. Burke, Andrew & Zhao, Jingyuan & Miller, Marshall & Fulton, Lewis, 2023. "Vehicle Choice Modeling for Light-, Medium-, and Heavy-Duty Zero-Emission Vehicles in California," Institute of Transportation Studies, Working Paper Series qt7437p058, Institute of Transportation Studies, UC Davis.
    6. Koh, Le Yi & Lee, Jia Yi & Wang, Xueqin & Yuen, Kum Fai, 2023. "Urban drone adoption: Addressing technological, privacy and task–technology fit concerns," Technology in Society, Elsevier, vol. 72(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    2. Morlotti, Chiara & Birolini, Sebastian & Malighetti, Paolo & Redondi, Renato, 2023. "A latent class approach to estimate air travelers’ propensity toward connecting itineraries," Research in Transportation Economics, Elsevier, vol. 99(C).
    3. de Luca, Stefano, 2012. "Modelling airport choice behaviour for direct flights, connecting flights and different travel plans," Journal of Transport Geography, Elsevier, vol. 22(C), pages 148-163.
    4. Zhou, Heng & Norman, Richard & Xia, Jianhong(Cecilia) & Hughes, Brett & Kelobonye, Keone & Nikolova, Gabi & Falkmer, Torbjorn, 2020. "Analysing travel mode and airline choice using latent class modelling: A case study in Western Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 187-205.
    5. Shin, Jungwoo & Hwang, Won-Sik, 2017. "Consumer preference and willingness to pay for a renewable fuel standard (RFS) policy: Focusing on ex-ante market analysis and segmentation," Energy Policy, Elsevier, vol. 106(C), pages 32-40.
    6. Gevrek, Z.Eylem & Uyduranoglu, Ayse, 2015. "Public preferences for carbon tax attributes," Ecological Economics, Elsevier, vol. 118(C), pages 186-197.
    7. Larranaga, Ana Margarita & Arellana, Julian & Senna, Luiz Afonso, 2017. "Encouraging intermodality: A stated preference analysis of freight mode choice in Rio Grande do Sul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 202-211.
    8. Freund-Feinstein, Uzi & Bekhor, Shlomo, 2017. "An airline itinerary choice model that includes the option to delay the decision," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 64-78.
    9. Yazdanpanah, Mahdi & Hosseinlou, Mansour Hadji, 2016. "The influence of personality traits on airport public transport access mode choice: A hybrid latent class choice modeling approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 147-163.
    10. Tao, Xuezong & Zhu, Lichao, 2020. "Meta-analysis of value of time in freight transportation: A comprehensive review based on discrete choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 213-233.
    11. Konstantinus, Abisai & Zuidgeest, Mark & Hess, Stephane & de Jong, Gerard, 2020. "Assessing inter-urban freight mode choice preference for short-sea shipping in the Southern African Development Community region," Journal of Transport Geography, Elsevier, vol. 88(C).
    12. Z. Eylem Gevrek & Ayse Uyduranoglu, 2015. "Public Preferences for Carbon Tax Attributes," Working Paper Series of the Department of Economics, University of Konstanz 2015-15, Department of Economics, University of Konstanz.
    13. Oryani, Bahareh & Koo, Yoonmo & Shafiee, Afsaneh & Rezania, Shahabaldin & Jung, Jiyeon & Choi, Hyunhong & Khan, Muhammad Kamran, 2022. "Heterogeneous preferences for EVs: Evidence from Iran," Renewable Energy, Elsevier, vol. 181(C), pages 675-691.
    14. Hensher, David & Louviere, Jordan & Swait, Joffre, 1998. "Combining sources of preference data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 197-221, November.
    15. Zaidan, Esmat & Abulibdeh, Ammar, 2018. "Modeling ground access mode choice behavior for Hamad International Airport in the 2022 FIFA World Cup city, Doha, Qatar," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 32-45.
    16. Feo-Valero, María & Arencibia, Ana Isabel & Román, Concepción, 2016. "Analyzing discrepancies between willingness to pay and willingness to accept for freight transport attributes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 151-164.
    17. Yang, Chih-Wen & Lu, Jin-Long & Hsu, Chun-Yen, 2014. "Modeling joint airport and route choice behavior for international and metropolitan airports," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 89-95.
    18. Choi, Jong Hae & Wang, Kun & Xia, Wenyi & Zhang, Anming, 2019. "Determining factors of air passengers’ transfer airport choice in the Southeast Asia – North America market: Managerial and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 203-216.
    19. Richard Yao & Riccardo Scarpa & John Rose & James Turner, 2015. "Experimental Design Criteria and Their Behavioural Efficiency: An Evaluation in the Field," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(3), pages 433-455, November.
    20. Fuellhart, Kurt & O’Connor, Kevin & Woltemade, Christopher, 2013. "Route-level passenger variation within three multi-airport regions in the USA," Journal of Transport Geography, Elsevier, vol. 31(C), pages 171-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:84:y:2020:i:c:s0969699719304661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.