IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v28y1994i3p187-195.html
   My bibliography  Save this article

An analysis of air travelers' departure airport and destination choice behavior

Author

Listed:
  • Furuichi, Masahiko
  • Koppelman, Frank S.

Abstract

This paper formulates and estimates nested logit models of departure airport and destination choice for international travel. The empirical analysis was accomplished using a 1989 survey of international air travelers departing from Japan. The estimation results support the use of nested logit rather than multinomial logit models. Analysis of the estimated parameters indicates that both business and pleasure air travelers have high values of time for both line-haul and access time.

Suggested Citation

  • Furuichi, Masahiko & Koppelman, Frank S., 1994. "An analysis of air travelers' departure airport and destination choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(3), pages 187-195, May.
  • Handle: RePEc:eee:transa:v:28:y:1994:i:3:p:187-195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0965-8564(94)90016-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Jing & Meng, Yucan & Timmermans, Harry & Zhang, Anming, 2021. "Modeling hesitancy in airport choice: A comparison of discrete choice and machine learning methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 230-250.
    2. Pels, Eric & Nijkamp, Peter & Rietveld, Piet, 2003. "Access to and competition between airports: a case study for the San Francisco Bay area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 71-83, January.
    3. Paul Koster & Eric Pels & Erik Verhoef, 2016. "The User Costs of Air Travel Delay Variability," Transportation Science, INFORMS, vol. 50(1), pages 120-131, February.
    4. Yang, Chih-Wen & Lu, Jin-Long & Hsu, Chun-Yen, 2014. "Modeling joint airport and route choice behavior for international and metropolitan airports," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 89-95.
    5. Hsu, Chaug-Ing & Wen, Yuh-Horng, 2002. "Reliability evaluation for airline network design in response to fluctuation in passenger demand," Omega, Elsevier, vol. 30(3), pages 197-213, June.
    6. Loo, Becky P.Y., 2008. "Passengers’ airport choice within multi-airport regions (MARs): some insights from a stated preference survey at Hong Kong International Airport," Journal of Transport Geography, Elsevier, vol. 16(2), pages 117-125.
    7. de Luca, Stefano, 2012. "Modelling airport choice behaviour for direct flights, connecting flights and different travel plans," Journal of Transport Geography, Elsevier, vol. 22(C), pages 148-163.
    8. Xia, Wenyi & Jiang, Changmin & Wang, Kun & Zhang, Anming, 2019. "Air-rail revenue sharing in a multi-airport system: Effects on traffic and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 304-319.
    9. Choi, Jong Hae & Wang, Kun & Xia, Wenyi & Zhang, Anming, 2019. "Determining factors of air passengers’ transfer airport choice in the Southeast Asia – North America market: Managerial and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 203-216.
    10. Ilse Terpstra & Mark G. Lijesen, 2015. "The impact of high speed rail on airport competition," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 106(3), pages 263-275, July.
    11. Zhang, Yunlong & Xie, Yuanchang, 2005. "Small community airport choice behavior analysis: A case study of GTR," Journal of Air Transport Management, Elsevier, vol. 11(6), pages 442-447.
    12. Gelhausen, Marc C. & Berster, Peter & Wilken, Dieter, 2018. "A new direct demand model of long-term forecasting air passengers and air transport movements at German airports," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 140-152.
    13. Birolini, Sebastian & Cattaneo, Mattia & Malighetti, Paolo & Morlotti, Chiara, 2020. "Integrated origin-based demand modeling for air transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    14. Coldren, Gregory M. & Koppelman, Frank S., 2005. "Modeling the competition among air-travel itinerary shares: GEV model development," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 345-365, May.
    15. Paliska, Dejan & Drobne, Samo & Borruso, Giuseppe & Gardina, Massimo & Fabjan, Daša, 2016. "Passengers' airport choice and airports' catchment area analysis in cross-border Upper Adriatic multi-airport region," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 143-154.
    16. Danalet, Antonin & Tinguely, Loïc & Lapparent, Matthieu de & Bierlaire, Michel, 2016. "Location choice with longitudinal WiFi data," Journal of choice modelling, Elsevier, vol. 18(C), pages 1-17.
    17. Basar, Gözen & Bhat, Chandra, 2004. "A parameterized consideration set model for airport choice: an application to the San Francisco Bay Area," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 889-904, December.
    18. Yang, Chih-Wen & Wang, Hsiao-Chun, 2017. "A comparison of flight routes in a dual-airport region using overlapping error components and a cross-nested structure in GEV models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 85-95.
    19. Kim, Sang Hyun, 2020. "Choice model based analysis of consumer preference for drone delivery service," Journal of Air Transport Management, Elsevier, vol. 84(C).
    20. Hess, Stephane & Polak, John W., 2005. "Mixed logit modelling of airport choice in multi-airport regions," Journal of Air Transport Management, Elsevier, vol. 11(2), pages 59-68.
    21. Cheung, Tommy King-Yin & Wong, Wai-hung & Zhang, Anming & Wu, Yangming, 2020. "Spatial panel model for examining airport relationships within multi-airport regions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 148-163.
    22. Johnson, Daniel & Hess, Stephane & Matthews, Bryan, 2014. "Understanding air travellers' trade-offs between connecting flights and surface access characteristics," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 70-77.
    23. Hsu, Chaug-Ing & Wen, Yuh-Horng, 2000. "Application of Grey theory and multiobjective programming towards airline network design," European Journal of Operational Research, Elsevier, vol. 127(1), pages 44-68, November.
    24. Lieshout, Rogier, 2012. "Measuring the size of an airport’s catchment area," Journal of Transport Geography, Elsevier, vol. 25(C), pages 27-34.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:28:y:1994:i:3:p:187-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.