IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v71y2018icp140-152.html
   My bibliography  Save this article

A new direct demand model of long-term forecasting air passengers and air transport movements at German airports

Author

Listed:
  • Gelhausen, Marc C.
  • Berster, Peter
  • Wilken, Dieter

Abstract

The German Aerospace Center has developed and applied a “classical†four-step model of forecasting passenger and flight volume at German airports for many years. However, it has become increasingly difficult to update and verify the model because of a lack of specific data. We have therefore developed a more versatile model based upon co-integration theory, which directly forecasts passenger and flight volume at German airports. The paper describes the model approaches and discusses the advantages and disadvantages of both the classical and new model approaches. The model includes demand shocks and estimated GDP-elasticity is 1.31. The model has been employed to estimate the effects of Brexit on traffic volume at German airports for the years 2016–2018.

Suggested Citation

  • Gelhausen, Marc C. & Berster, Peter & Wilken, Dieter, 2018. "A new direct demand model of long-term forecasting air passengers and air transport movements at German airports," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 140-152.
  • Handle: RePEc:eee:jaitra:v:71:y:2018:i:c:p:140-152
    DOI: 10.1016/j.jairtraman.2018.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699718301376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2018.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Endo, Nobuaki, 2007. "International trade in air transport services: Penetration of foreign airlines into Japan under the bilateral aviation policies of the US and Japan," Journal of Air Transport Management, Elsevier, vol. 13(5), pages 285-292.
    2. Eric Pels & Peter Nijkamp & Piet Rietveld, 2001. "Airport and Airline Choice in a Multiple Airport Region: An Empirical Analysis for the San Francisco Bay Area," Regional Studies, Taylor & Francis Journals, vol. 35(1), pages 1-9.
    3. Basar, Gözen & Bhat, Chandra, 2004. "A parameterized consideration set model for airport choice: an application to the San Francisco Bay Area," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 889-904, December.
    4. de Luca, Stefano, 2012. "Modelling airport choice behaviour for direct flights, connecting flights and different travel plans," Journal of Transport Geography, Elsevier, vol. 22(C), pages 148-163.
    5. Hess, Stephane & Adler, Thomas & Polak, John W., 2007. "Modelling airport and airline choice behaviour with the use of stated preference survey data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(3), pages 221-233, May.
    6. Bhadra, Dipasis & Kee, Jacqueline, 2008. "Structure and dynamics of the core US air travel markets: A basic empirical analysis of domestic passenger demand," Journal of Air Transport Management, Elsevier, vol. 14(1), pages 27-39.
    7. Berster, Peter & Gelhausen, Marc C. & Wilken, Dieter, 2011. "Business aviation in Germany: An empirical and model-based analysis," Journal of Air Transport Management, Elsevier, vol. 17(6), pages 354-359.
    8. Gelhausen, Marc C., 2011. "Modelling the effects of capacity constraints on air travellers’ airport choice," Journal of Air Transport Management, Elsevier, vol. 17(2), pages 116-119.
    9. Suzuki, Yoshinori, 2007. "Modeling and testing the "two-step" decision process of travelers in airport and airline choices," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(1), pages 1-20, January.
    10. Givoni, Moshe & Rietveld, Piet, 2009. "Airline's choice of aircraft size - Explanations and implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 500-510, June.
    11. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    12. Pels, Eric & Nijkamp, Peter & Rietveld, Piet, 2003. "Access to and competition between airports: a case study for the San Francisco Bay area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 71-83, January.
    13. Furuichi, Masahiko & Koppelman, Frank S., 1994. "An analysis of air travelers' departure airport and destination choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(3), pages 187-195, May.
    14. Dobruszkes, Frédéric, 2009. "New Europe, new low-cost air services," Journal of Transport Geography, Elsevier, vol. 17(6), pages 423-432.
    15. Zuidberg, Joost, 2014. "Identifying airline cost economies: An econometric analysis of the factors affecting aircraft operating costs," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 86-95.
    16. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    17. Wilken, Dieter & Berster, Peter & Gelhausen, Marc C., 2016. "Analysis of demand structures on intercontinental routes to and from Europe with a view to identifying potential for new low-cost services," Journal of Air Transport Management, Elsevier, vol. 56(PB), pages 79-90.
    18. Carson, Richard T. & Cenesizoglu, Tolga & Parker, Roger, 2011. "Forecasting (aggregate) demand for US commercial air travel," International Journal of Forecasting, Elsevier, vol. 27(3), pages 923-941, July.
    19. Engle, R. F. & Granger, C. W. J. (ed.), 1991. "Long-Run Economic Relationships: Readings in Cointegration," OUP Catalogue, Oxford University Press, number 9780198283393, Decembrie.
    20. Stephane Hess & John W. Polak, 2006. "Airport, airline and access mode choice in the San Francisco Bay area," Papers in Regional Science, Wiley Blackwell, vol. 85(4), pages 543-567, November.
    21. Frédéric Dobruszkes, 2009. "New Europe, new low-cost air services," ULB Institutional Repository 2013/95851, ULB -- Universite Libre de Bruxelles.
    22. Yang, Chih-Wen & Lu, Jin-Long & Hsu, Chun-Yen, 2014. "Modeling joint airport and route choice behavior for international and metropolitan airports," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 89-95.
    23. Pels, Eric & Njegovan, Nenad & Behrens, Christiaan, 2009. "Low-cost airlines and airport competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(2), pages 335-344, March.
    24. Hazledine, Tim, 2009. "Border effects for domestic and international Canadian passenger air travel," Journal of Air Transport Management, Elsevier, vol. 15(1), pages 7-13.
    25. Gelhausen, Marc Christopher, 2007. "A Generalized Neural Logit Model for Airport and Access Mode Choice in Germany," MPRA Paper 4313, University Library of Munich, Germany, revised 2007.
    26. Matsumoto, Hidenobu, 2004. "International urban systems and air passenger and cargo flows: some calculations," Journal of Air Transport Management, Elsevier, vol. 10(4), pages 239-247.
    27. Grosche, Tobias & Rothlauf, Franz & Heinzl, Armin, 2007. "Gravity models for airline passenger volume estimation," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 175-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frédéric Dobruszkes, 2019. "Air services at risk: The threat of a hard Brexit at the airport level," Environment and Planning A, , vol. 51(1), pages 3-7, February.
    2. Chen, Jieh-Haur & Wei, Hsi-Hsien & Chen, Chih-Lin & Wei, Hsin-Yi & Chen, Yi-Ping & Ye, Zhongnan, 2020. "A practical approach to determining critical macroeconomic factors in air-traffic volume based on K-means clustering and decision-tree classification," Journal of Air Transport Management, Elsevier, vol. 82(C).
    3. Katarzyna Nosal Hoy & Katarzyna Solecka & Andrzej Szarata, 2019. "The Application of the Multiple Criteria Decision Aid to Assess Transport Policy Measures Focusing on Innovation," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    4. Xuanyu Yue & Julie Byrne, 2021. "Linking the Determinants of Air Passenger Flows and Aviation Related Carbon Emissions: A European Study," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    5. Yamaguchi, Hiromichi & Nakayama, Shoichiro, 2020. "Detection of base travel groups with different sensitivities to new high-speed rail services: Non-negative tensor decomposition approach," Transport Policy, Elsevier, vol. 97(C), pages 37-46.
    6. Xu, Shuojiang & Chan, Hing Kai & Zhang, Tiantian, 2019. "Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 169-180.
    7. Carmona-Benítez, Rafael Bernardo & Nieto, María Rosa, 2020. "SARIMA damp trend grey forecasting model for airline industry," Journal of Air Transport Management, Elsevier, vol. 82(C).
    8. Frédéric Dobruszkes, 2019. "Air services at risk: The threat of a hard Brexit at the airport level," ULB Institutional Repository 2013/280924, ULB -- Universite Libre de Bruxelles.
    9. Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
    10. Fabian Baier & Peter Berster & Marc Gelhausen, 2022. "Global cargo gravitation model: airports matter for forecasts," International Economics and Economic Policy, Springer, vol. 19(1), pages 219-238, February.
    11. Güner, Samet & Cebeci, Halil İbrahim, 2021. "Output targeting and capacity utilization for a new-built airport: Analysis for the new airport in Istanbul," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    12. Fanyu Meng & Wenwu Gong & Jun Liang & Xian Li & Yiping Zeng & Lili Yang, 2021. "Impact of different control policies for COVID-19 outbreak on the air transportation industry: A comparison between China, the U.S. and Singapore," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-19, March.
    13. Becken, Susanne & Carmignani, Fabrizio, 2020. "Are the current expectations for growing air travel demand realistic?," Annals of Tourism Research, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Woohyun & Windle, Robert J. & Dresner, Martin E., 2015. "The impact of low-cost carriers on airport choice in the US: A case study of the Washington–Baltimore region," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 141-157.
    2. de Luca, Stefano, 2012. "Modelling airport choice behaviour for direct flights, connecting flights and different travel plans," Journal of Transport Geography, Elsevier, vol. 22(C), pages 148-163.
    3. Yang, Chih-Wen & Lu, Jin-Long & Hsu, Chun-Yen, 2014. "Modeling joint airport and route choice behavior for international and metropolitan airports," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 89-95.
    4. Fuellhart, Kurt & O’Connor, Kevin & Woltemade, Christopher, 2013. "Route-level passenger variation within three multi-airport regions in the USA," Journal of Transport Geography, Elsevier, vol. 31(C), pages 171-180.
    5. Wilken, Dieter & Berster, Peter & Gelhausen, Marc C., 2016. "Analysis of demand structures on intercontinental routes to and from Europe with a view to identifying potential for new low-cost services," Journal of Air Transport Management, Elsevier, vol. 56(PB), pages 79-90.
    6. Evangelinos, Christos & Staub, Nelly & Marcucci, Edoardo & Gatta, Valerio, 2021. "The impact of airport parking fees on the tourist's airport/airline choice behavior," Journal of Air Transport Management, Elsevier, vol. 90(C).
    7. Allroggen, Florian & Wittman, Michael D. & Malina, Robert, 2015. "How air transport connects the world – A new metric of air connectivity and its evolution between 1990 and 2012," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 184-201.
    8. Escobari, Diego, 2017. "Airport, airline and departure time choice and substitution patterns: An empirical analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 198-210.
    9. Yang, Chih-Wen & Wang, Hsiao-Chun, 2017. "A comparison of flight routes in a dual-airport region using overlapping error components and a cross-nested structure in GEV models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 85-95.
    10. Kim, Amy M. & Ryerson, Megan S., 2018. "A long drive: Interregional airport passenger “leakage” in the U.S," Tourism Management, Elsevier, vol. 65(C), pages 237-244.
    11. Ishii, Jun & Jun, Sunyoung & Van Dender, Kurt, 2009. "Air travel choices in multi-airport markets," Journal of Urban Economics, Elsevier, vol. 65(2), pages 216-227, March.
    12. Teixeira, Filipe Marques & Derudder, Ben, 2021. "Spatio-temporal dynamics in airport catchment areas: The case of the New York Multi Airport Region," Journal of Transport Geography, Elsevier, vol. 90(C).
    13. Zijlstra, Toon, 2020. "A border effect in airport choice: Evidence from Western Europe," Journal of Air Transport Management, Elsevier, vol. 88(C).
    14. Choi, Jong Hae & Wang, Kun & Xia, Wenyi & Zhang, Anming, 2019. "Determining factors of air passengers’ transfer airport choice in the Southeast Asia – North America market: Managerial and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 203-216.
    15. Cheung, Tommy King-Yin & Wong, Wai-hung & Zhang, Anming & Wu, Yangming, 2020. "Spatial panel model for examining airport relationships within multi-airport regions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 148-163.
    16. Johnson, Daniel & Hess, Stephane & Matthews, Bryan, 2014. "Understanding air travellers' trade-offs between connecting flights and surface access characteristics," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 70-77.
    17. Paliska, Dejan & Drobne, Samo & Borruso, Giuseppe & Gardina, Massimo & Fabjan, Daša, 2016. "Passengers' airport choice and airports' catchment area analysis in cross-border Upper Adriatic multi-airport region," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 143-154.
    18. Hess, Stephane, 2007. "Posterior analysis of random taste coefficients in air travel behaviour modelling," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 203-212.
    19. Marcucci, Edoardo & Gatta, Valerio, 2011. "Regional airport choice: Consumer behaviour and policy implications," Journal of Transport Geography, Elsevier, vol. 19(1), pages 70-84.
    20. Fu, Qian & Kim, Amy M., 2016. "Supply-and-demand models for exploring relationships between smaller airports and neighboring hub airports in the U.S," Journal of Air Transport Management, Elsevier, vol. 52(C), pages 67-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:71:y:2018:i:c:p:140-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.