IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v108y2018icp106-126.html
   My bibliography  Save this article

Demand imbalances and multi-period public transport supply

Author

Listed:
  • Hörcher, Daniel
  • Graham, Daniel J.

Abstract

This paper investigates multi-period public transport supply, i.e. networks in which capacity cannot be differentiated between links and time periods facing independent but nonidentical demand conditions. This setting is particularly relevant in public transport, as earlier findings on multi-period road supply cannot be applied when the user cost function, defined as the sum of waiting time and crowding costs, is nonhomogeneous. The presence of temporal, spatial and directional demand imbalances is unavoidable in a public transport network. It is not obvious, however, how the magnitude of demand imbalances may affect its economic and financial performance. We show in a simple back-haul setting with elastic demand, controlling for total willingness to pay in the network, that asymmetries in market size reduce the attainable social surplus of a service, while variety in maximum willingness to pay leads to higher aggregate social surplus and lower subsidy under efficient pricing. The analysis of multi-period supply sheds light on the relationship between urban structure, daily activity patterns, and public transport performance.

Suggested Citation

  • Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
  • Handle: RePEc:eee:transb:v:108:y:2018:i:c:p:106-126
    DOI: 10.1016/j.trb.2017.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517304812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. F. Newell, 1971. "Dispatching Policies for a Transportation Route," Transportation Science, INFORMS, vol. 5(1), pages 91-105, February.
    2. Lindsey, Robin, 2009. "Cost recovery from congestion tolls with random capacity and demand," Journal of Urban Economics, Elsevier, vol. 66(1), pages 16-24, July.
    3. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    4. Wardman, Mark & Murphy, Paul, 2015. "Passengers’ valuations of train seating layout, position and occupancy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 222-238.
    5. Bichsel, Robert, 2001. "Should Road Users Pay the Full Cost of Road Provision?," Journal of Urban Economics, Elsevier, vol. 50(2), pages 367-383, September.
    6. Oldfield, R. H. & Bly, P. H., 1988. "An analytic investigation of optimal bus size," Transportation Research Part B: Methodological, Elsevier, vol. 22(5), pages 319-337, October.
    7. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    8. Piet Rietveld & Roberto Roson, 2002. "Direction dependent prices in public transport: A good idea? The back haul pricing problem for a monopolistic public transport firm," Transportation, Springer, vol. 29(4), pages 397-417, November.
    9. Hörcher, Daniel & Graham, Daniel J. & Anderson, Richard J., 2018. "The economics of seat provision in public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 277-292.
    10. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    11. Sergio Jara-Díaz & Antonio Gschwender, 2009. "The effect of financial constraints on the optimal design of public transport services," Transportation, Springer, vol. 36(1), pages 65-75, January.
    12. Li, Zheng & Hensher, David A., 2011. "Crowding and public transport: A review of willingness to pay evidence and its relevance in project appraisal," Transport Policy, Elsevier, vol. 18(6), pages 880-887, November.
    13. Yang, Hai & Meng, Qiang, 2002. "A note on "highway pricing and capacity choice in a road network under a build-operate-transfer scheme"," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(7), pages 659-663, August.
    14. Michael L. Anderson, 2014. "Subways, Strikes, and Slowdowns: The Impacts of Public Transit on Traffic Congestion," American Economic Review, American Economic Association, vol. 104(9), pages 2763-2796, September.
    15. Eric Pels & Erik T Verhoef, 2007. "Infrastructure Pricing and Competition between Modes in Urban Transport," Environment and Planning A, , vol. 39(9), pages 2119-2138, September.
    16. Tirachini, Alejandro, 2014. "The economics and engineering of bus stops: Spacing, design and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 37-57.
    17. Piet Rietveld & Stefan van Woudenberg, 2007. "Second-best Decision Making of Railway Operators: How to Fix Fares, Frequency and Vehicle Size," Journal of Transport Economics and Policy, University of Bath, vol. 41(3), pages 363-385, September.
    18. Mohring, Herbert, 1970. "The Peak Load Problem with Increasing Returns and Pricing Constraints," American Economic Review, American Economic Association, vol. 60(4), pages 693-705, September.
    19. Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Comparing operator and users costs of light rail, heavy rail and bus rapid transit over a radial public transport network," Research in Transportation Economics, Elsevier, vol. 29(1), pages 231-242.
    20. Shyue Koong Chang & Schonfeld, Paul M., 1991. "Multiple period optimization of bus transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 453-478, December.
    21. Guo, Xin & Sun, Huijun & Wu, Jianjun & Jin, Jiangang & Zhou, Jin & Gao, Ziyou, 2017. "Multiperiod-based timetable optimization for metro transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 46-67.
    22. Hörcher, Daniel & Graham, Daniel J. & Anderson, Richard J., 2017. "Crowding cost estimation with large scale smart card and vehicle location data," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 105-125.
    23. Mark Wardman & Gerard Whelan, 2011. "Twenty Years of Rail Crowding Valuation Studies: Evidence and Lessons from British Experience," Transport Reviews, Taylor & Francis Journals, vol. 31(3), pages 379-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
    2. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    3. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    4. Svanberg , Lisa & Pyddoke, Roger, 2020. "Policies for on-board crowding in public transportation : a literature review," Working Papers 2020:6, Swedish National Road & Transport Research Institute (VTI).
    5. Hörcher, Daniel & Graham, Daniel J., 2020. "MaaS economics: Should we fight car ownership with subscriptions to alternative modes?," Economics of Transportation, Elsevier, vol. 22(C).
    6. Wang, Bangjuan & Liu, Chengliang & Zhang, Hong, 2022. "Where are equity and service effectiveness? A tale from public transport in Shanghai," Journal of Transport Geography, Elsevier, vol. 98(C).
    7. Thommen, Christoph & Hintermann, Beat, 2023. "Price versus Commitment: Managing the demand for off-peak train tickets in a field experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    8. Yinghan Zhu & Liudan Jiao & Yu Zhang & Ya Wu & Xiaosen Huo, 2021. "Sustainable Development of Urban Metro System: Perspective of Coordination between Supply and Demand," IJERPH, MDPI, vol. 18(19), pages 1-24, September.
    9. Liu, Jiaguo & Zhao, Huida & Li, Jian & Yue, Xiaohang, 2021. "Operational strategy of customized bus considering customers’ variety seeking behavior and service level," International Journal of Production Economics, Elsevier, vol. 231(C).
    10. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).
    11. Xuto, Praj & Anderson, Richard J. & Graham, Daniel J. & Hörcher, Daniel, 2023. "Sustainable urban rail funding: Insights from a century-long global dataset," Transport Policy, Elsevier, vol. 130(C), pages 100-115.
    12. Hörcher, Daniel & De Borger, Bruno & Graham, Daniel J., 2023. "Subsidised transport services in a fiscal federation: Why local governments may be against decentralised service provision," Economics of Transportation, Elsevier, vol. 34(C).
    13. Xiaohui Wu & Ren He & Meiling He, 2021. "Chaos Analysis of Urban Low-Carbon Traffic Based on Game Theory," IJERPH, MDPI, vol. 18(5), pages 1-12, February.
    14. Daniel Hörcher & Daniel J. Graham, 2021. "The Gini index of demand imbalances in public transport," Transportation, Springer, vol. 48(5), pages 2521-2544, October.
    15. Guo, Qianwen & Sun, Yanshuo & Schonfeld, Paul & Li, Zhongfei, 2021. "Time-dependent transit fare optimization with elastic and spatially distributed demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 353-378.
    16. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    17. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
    18. Andres Fielbaum & Alejandro Tirachini & Javier Alonso-Mora, 2021. "New sources of economies and diseconomies of scale in on-demand ridepooling systems and comparison with public transport," Papers 2106.15270, arXiv.org, revised Jul 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    2. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    3. Daniel Hörcher & Daniel J. Graham, 2021. "The Gini index of demand imbalances in public transport," Transportation, Springer, vol. 48(5), pages 2521-2544, October.
    4. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
    5. Zhang, Junlin & Yang, Hai & Lindsey, Robin & Li, Xinwei, 2020. "Modeling and managing congested transit service with heterogeneous users under monopoly," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 249-266.
    6. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    7. Haywood, Luke & Koning, Martin, 2015. "The distribution of crowding costs in public transport: New evidence from Paris," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 182-201.
    8. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    9. Sepúlveda, Juan Pablo & Galilea, Patricia, 2020. "How do different payment schemes to operators affect public transport concessions? A microeconomic model," Transport Policy, Elsevier, vol. 93(C), pages 27-35.
    10. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2017. "Optimal fleet size, frequencies and vehicle capacities considering peak and off-peak periods in public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 65-74.
    11. Tirachini, Alejandro & Sun, Lijun & Erath, Alexander & Chakirov, Artem, 2016. "Valuation of sitting and standing in metro trains using revealed preferences," Transport Policy, Elsevier, vol. 47(C), pages 94-104.
    12. Hörcher, Daniel & Graham, Daniel J. & Anderson, Richard J., 2018. "The economics of seat provision in public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 277-292.
    13. Proboste, Francisco & Muñoz, Juan Carlos & Gschwender, Antonio, 2020. "Comparing social costs of public transport networks structured around an Open and Closed BRT corridor in medium sized cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 187-212.
    14. Haywood, Luke & Koning, Martin & Prud'homme, Remy, 2018. "The economic cost of subway congestion: Estimates from Paris," Economics of Transportation, Elsevier, vol. 14(C), pages 1-8.
    15. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).
    16. Bouscasse, Hélène & de Lapparent, Matthieu, 2019. "Perceived comfort and values of travel time savings in the Rhône-Alpes Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 370-387.
    17. Börjesson, Maria & Fung, Chau Man & Proost, Stef & Yan, Zifei, 2018. "Do buses hinder cyclists or is it the other way around? Optimal bus fares, bus stops and cycling tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 326-346.
    18. Moccia, Luigi & Laporte, Gilbert, 2016. "Improved models for technology choice in a transit corridor with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 245-270.
    19. Hörcher, Daniel & De Borger, Bruno & Graham, Daniel J., 2023. "Subsidised transport services in a fiscal federation: Why local governments may be against decentralised service provision," Economics of Transportation, Elsevier, vol. 34(C).
    20. Militão, Aitan M. & Tirachini, Alejandro, 2021. "Optimal fleet size for a shared demand-responsive transport system with human-driven vs automated vehicles: A total cost minimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 52-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:108:y:2018:i:c:p:106-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.