IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v49y2022i2d10.1007_s11116-021-10192-6.html
   My bibliography  Save this article

Social distancing in public transport: mobilising new technologies for demand management under the Covid-19 crisis

Author

Listed:
  • Daniel Hörcher

    (Imperial College London)

  • Ramandeep Singh

    (Imperial College London)

  • Daniel J. Graham

    (Imperial College London)

Abstract

Dense urban areas are especially hardly hit by the Covid-19 crisis due to the limited availability of public transport, one of the most efficient means of mass mobility. In light of the Covid-19 pandemic, public transport operators are experiencing steep declines in demand and fare revenues due to the perceived risk of infection within vehicles and other facilities. The purpose of this paper is to explore the possibilities of implementing social distancing in public transport in line with epidemiological advice. Social distancing requires effective demand management to keep vehicle occupancy rates under a predefined threshold, both spatially and temporally. We review the literature of five demand management methods enabled by new information and ticketing technologies: (i) inflow control with queueing, (ii) time and space dependent pricing, (iii) capacity reservation with advance booking, (iv) slot auctioning, and (v) tradeable travel permit schemes. Thus the paper collects the relevant literature into a single point of reference, and provides interpretation from the viewpoint of practical applicability during and after the pandemic.

Suggested Citation

  • Daniel Hörcher & Ramandeep Singh & Daniel J. Graham, 2022. "Social distancing in public transport: mobilising new technologies for demand management under the Covid-19 crisis," Transportation, Springer, vol. 49(2), pages 735-764, April.
  • Handle: RePEc:kap:transp:v:49:y:2022:i:2:d:10.1007_s11116-021-10192-6
    DOI: 10.1007/s11116-021-10192-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-021-10192-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-021-10192-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delgado, Felipe & Munoz, Juan Carlos & Giesen, Ricardo, 2012. "How much can holding and/or limiting boarding improve transit performance?," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1202-1217.
    2. Lamotte, Raphaël & de Palma, André & Geroliminis, Nikolas, 2017. "On the use of reservation-based autonomous vehicles for demand management," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 205-227.
    3. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    4. Bao, Yue & Verhoef, Erik T. & Koster, Paul, 2019. "Regulating dynamic congestion externalities with tradable credit schemes: Does a unique equilibrium exist?," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 225-236.
    5. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    6. Montgomery, W. David, 1972. "Markets in licenses and efficient pollution control programs," Journal of Economic Theory, Elsevier, vol. 5(3), pages 395-418, December.
    7. Ian W. H. Parry & Kenneth A. Small, 2009. "Should Urban Transit Subsidies Be Reduced?," American Economic Review, American Economic Association, vol. 99(3), pages 700-724, June.
    8. Shi, Jungang & Yang, Lixing & Yang, Jing & Gao, Ziyou, 2018. "Service-oriented train timetabling with collaborative passenger flow control on an oversaturated metro line: An integer linear optimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 26-59.
    9. Zhang, Lei & Levinson, David, 2004. "Optimal freeway ramp control without origin-destination information," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 869-887, December.
    10. Leonardo J. Basso & Hugo E. Silva, 2014. "Efficiency and Substitutability of Transit Subsidies and Other Urban Transport Policies," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 1-33, November.
    11. Oldfield, R. H. & Bly, P. H., 1988. "An analytic investigation of optimal bus size," Transportation Research Part B: Methodological, Elsevier, vol. 22(5), pages 319-337, October.
    12. Huang, Hai-Jun, 2000. "Fares and tolls in a competitive system with transit and highway: the case with two groups of commuters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(4), pages 267-284, December.
    13. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    14. Lei Zhang & David Levinson, 2005. "Balancing Efficiency and Equity of Ramp Meters," Working Papers 200508, University of Minnesota: Nexus Research Group.
    15. Mark Wardman, 2012. "Review and meta-analysis of U.K. time elasticities of travel demand," Transportation, Springer, vol. 39(3), pages 465-490, May.
    16. Ian W. H. Parry & Antonio Bento, 2001. "Revenue Recycling and the Welfare Effects of Road Pricing," Scandinavian Journal of Economics, Wiley Blackwell, vol. 103(4), pages 645-671, December.
    17. Rouwendal, Jan & Verhoef, Erik T. & Knockaert, Jasper, 2012. "Give or take? Rewards versus charges for a congested bottleneck," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 166-176.
    18. Anthony J. Venables, 2007. "Evaluating Urban Transport Improvements: Cost-Benefit Analysis in the Presence of Agglomeration and Income Taxation," Journal of Transport Economics and Policy, University of Bath, vol. 41(2), pages 173-188, May.
    19. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    20. Yang, Hai & Yagar, Sam & Iida, Yasunori & Asakura, Yasuo, 1994. "An algorithm for the inflow control problem on urban freeway networks with user-optimal flows," Transportation Research Part B: Methodological, Elsevier, vol. 28(2), pages 123-139, April.
    21. Wang, Xiaolei & Yang, Hai, 2012. "Bisection-based trial-and-error implementation of marginal cost pricing and tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1085-1096.
    22. Zhao, Y. & Triantis, K. & Teodorovic, D. & Edara, P., 2010. "A travel demand management strategy: The downtown space reservation system," European Journal of Operational Research, Elsevier, vol. 205(3), pages 584-594, September.
    23. Nico Dogterom & Dick Ettema & Martin Dijst, 2017. "Tradable credits for managing car travel: a review of empirical research and relevant behavioural approaches," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 322-343, May.
    24. Wadud, Zia, 2011. "Personal tradable carbon permits for road transport: Why, why not and who wins?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1052-1065.
    25. Small, Kenneth A, 2004. "6. Road Pricing And Public Transport," Research in Transportation Economics, Elsevier, vol. 9(1), pages 133-158, January.
    26. Knockaert, Jasper & Tseng, Yin-Yen & Verhoef, Erik T. & Rouwendal, Jan, 2012. "The Spitsmijden experiment: A reward to battle congestion," Transport Policy, Elsevier, vol. 24(C), pages 260-272.
    27. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    28. Han, Deren & Yang, Hai, 2009. "Congestion pricing in the absence of demand functions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 159-171, January.
    29. Maria Börjesson & Chau Man Fung & Stef Proost & Zifei Yan, 2019. "Do Small Cities Need More Public Transport Subsidies Than Big Cities?," Journal of Transport Economics and Policy, University of Bath, vol. 53(4), pages 275-27-298.
    30. Guo, Ren-Yong & Szeto, W.Y. & Long, Jiancheng, 2020. "Trial-and-error operation schemes for bimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 106-123.
    31. Susan Grant-Muller & Meng Xu, 2014. "The Role of Tradable Credit Schemes in Road Traffic Congestion Management," Transport Reviews, Taylor & Francis Journals, vol. 34(2), pages 128-149, March.
    32. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    33. Eric Pels & Erik T Verhoef, 2007. "Infrastructure Pricing and Competition between Modes in Urban Transport," Environment and Planning A, , vol. 39(9), pages 2119-2138, September.
    34. Daniel J McGrail & Jianli Dai & Kathleen M McAndrews & Raghu Kalluri, 2020. "Enacting national social distancing policies corresponds with dramatic reduction in COVID19 infection rates," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-9, July.
    35. Oum, Tae Hoon & Wang, Kun, 2020. "Socially optimal lockdown and travel restrictions for fighting communicable virus including COVID-19," Transport Policy, Elsevier, vol. 96(C), pages 94-100.
    36. Fan, Wenbo & Jiang, Xinguo, 2013. "Tradable mobility permits in roadway capacity allocation: Review and appraisal," Transport Policy, Elsevier, vol. 30(C), pages 132-142.
    37. Brands, Devi K. & Verhoef, Erik T. & Knockaert, Jasper & Koster, Paul R., 2020. "Tradable permits to manage urban mobility: Market design and experimental implementation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 34-46.
    38. E Verhoef & P Nijkamp & P Rietveld, 1997. "Tradeable Permits: Their Potential in the Regulation of Road Transport Externalities," Environment and Planning B, , vol. 24(4), pages 527-548, August.
    39. Gaskin, Darrell J. & Zare, Hossein & Delarmente, Benjo A., 2021. "Geographic disparities in COVID-19 infections and deaths: The role of transportation," Transport Policy, Elsevier, vol. 102(C), pages 35-46.
    40. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    41. Wong, Jinn-Tsai, 1997. "Basic concepts for a system for advance booking for highway use," Transport Policy, Elsevier, vol. 4(2), pages 109-114, April.
    42. Yang, Hai & Wang, Xiaolei, 2011. "Managing network mobility with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 580-594, March.
    43. Wang, Shuaian & Zhang, Wei & Qu, Xiaobo, 2018. "Trial-and-error train fare design scheme for addressing boarding/alighting congestion at CBD stations," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 318-335.
    44. Vickerman, Roger, 2021. "Will Covid-19 put the public back in public transport? A UK perspective," Transport Policy, Elsevier, vol. 103(C), pages 95-102.
    45. Kraus, Marvin & Yoshida, Yuichiro, 2002. "The Commuter's Time-of-Use Decision and Optimal Pricing and Service in Urban Mass Transit," Journal of Urban Economics, Elsevier, vol. 51(1), pages 170-195, January.
    46. repec:bla:scandj:v:103:y:2001:i:4:p:645-71 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    2. Daniel Hörcher & Daniel J. Graham, 2021. "The Gini index of demand imbalances in public transport," Transportation, Springer, vol. 48(5), pages 2521-2544, October.
    3. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    4. Dogterom, Nico & Ettema, Dick & Dijst, Martin, 2018. "Behavioural effects of a tradable driving credit scheme: Results of an online stated adaptation experiment in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 52-64.
    5. Hörcher, Daniel & De Borger, Bruno & Graham, Daniel J., 2023. "Subsidised transport services in a fiscal federation: Why local governments may be against decentralised service provision," Economics of Transportation, Elsevier, vol. 34(C).
    6. Siyu Chen & Ravi Seshadri & Carlos Lima Azevedo & Arun P. Akkinepally & Renming Liu & Andrea Araldo & Yu Jiang & Moshe E. Ben-Akiva, 2021. "Market Design for Tradable Mobility Credits," Papers 2101.00669, arXiv.org, revised Sep 2022.
    7. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
    8. Fan, Wenbo & Xiao, Feng & Nie, Yu (Macro), 2022. "Managing bottleneck congestion with tradable credits under asymmetric transaction cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    9. Dogterom, Nico & Ettema, Dick & Dijst, Martin, 2018. "Activity-travel adaptations in response to a tradable driving credits scheme," Transport Policy, Elsevier, vol. 72(C), pages 79-88.
    10. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
    11. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    12. Guo, Ren-Yong & Szeto, W.Y. & Long, Jiancheng, 2020. "Trial-and-error operation schemes for bimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 106-123.
    13. Lindsey, Robin & Santos, Georgina, 2020. "Addressing transportation and environmental externalities with economics: Are policy makers listening?," Research in Transportation Economics, Elsevier, vol. 82(C).
    14. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    15. Ren-Yong Guo & Hai-Jun Huang & Hai Yang, 2019. "Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence," Networks and Spatial Economics, Springer, vol. 19(3), pages 833-868, September.
    16. de Palma, André & Lindsey, Robin, 2020. "Tradable permit schemes for congestible facilities with uncertain supply and demand," Economics of Transportation, Elsevier, vol. 21(C).
    17. Fan, Wenbo & Jiang, Xinguo & Erdogan, Sevgi & Sun, Yanshuo, 2016. "Modeling and evaluating FAIR highway performance and policy options," Transport Policy, Elsevier, vol. 48(C), pages 156-168.
    18. Ravi Seshadri & André de Palma & Moshe Ben-Akiva, 2021. "Congestion Tolling−Dollars versus Tokens: Within-day Dynamics," THEMA Working Papers 2021-12, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    19. Candia, Diego & Verhoef, Erik T., 2022. "Tradable mobility permits in a monocentric city with pre-existing labor taxation: A general equilibrium perspective," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 145-165.
    20. Gao, Ge & Sun, Huijun & Wu, Jianjun & Liu, Xinmin & Chen, Weiya, 2018. "Park-and-ride service design under a price-based tradable credits scheme in a linear monocentric city," Transport Policy, Elsevier, vol. 68(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:49:y:2022:i:2:d:10.1007_s11116-021-10192-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.